搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善

李忠辉 罗伟科 杨乾坤 李亮 周建军 董逊 彭大青 张东国 潘磊 李传皓

引用本文:
Citation:

金属有机物化学气相沉积同质外延GaN薄膜表面形貌的改善

李忠辉, 罗伟科, 杨乾坤, 李亮, 周建军, 董逊, 彭大青, 张东国, 潘磊, 李传皓

Surface morphology improvement of homoepitaxial GaN grown on free-standing GaN substrate by metalorganic chemical vapor deposition

Li Zhong-Hui, Luo Wei-Ke, Yang Qian-Kun, Li Liang, Zhou Jian-Jun, Dong Xun, Peng Da-Qing, Zhang Dong-Guo, Pan Lei, Li Chuan-Hao
PDF
导出引用
  • 为了获得高质量的GaN薄膜材料,研究了金属有机物气相沉积系统中GaN插入层对GaN 衬底同质外延层表面宏观缺陷和晶体质量的影响.研究发现,插入层生长温度是影响GaN同质外延膜表面形貌和晶体质量的关键因素.由于生长模式与插入层生长温度相关,随着插入层生长温度的降低,外延膜生长模式由准台阶流模式转变为层状模式,GaN同质外延膜表面丘壑状宏观缺陷逐渐减少,但微观位错密度逐渐增大.通过对插入层温度和厚度的优化,进一步调控外延层的生长模式,最终有效降低了外延层表面的宏观缺陷,获得了表面原子级光滑平整、位错密度极低的GaN同质外延膜,其X射线衍射摇摆曲线(002),(102)晶面半峰宽分别为125 arcsec和85 arcsec,表面粗糙度均方根大小为0.23 nm.
    Free-standing GaN is generally regarded as an ideal substrate for GaN-based devices due to its advantage of low threading dislocation density (TDD) and good thermal conductivity. However, new surface features such as hillocks and ridges appear on the GaN homoepitaxy films. In this paper, the influences of the intermediate GaN (IM-GaN) layer on the surface defects and crystal quality of GaN homoepitaxy films grown on c-plane GaN substrates by metalorganic chemical vapor deposition are investigated. It is found that hexagonal hillocks and ridges on the surface can be avoided by inserting an IM-GaN layer grown at an intermediate temperature (650850℃), prior to the growth of GaN at 1050℃. The results based on X-ray diffraction (XRD) measurements and differential interference contrast microscopy images demonstrate that the growth temperature of the IM-GaN layer has a significant influence on GaN homoepitaxy layer, which is one of the most critical parameters determining the surface morphology and crystal quality. As the IM-GaN growth temperature decreases from 1050℃ to 650℃, thed densities of hillocks and ridges on the surface reduce gradually. While, the XRD full width at half maximum (FWHM) values of (002) and (102) peaks for the homoepitaxy films are increased rapidly, indicating the adding of the TDD in the films. The atomic force microscopy (AFM) images show that the quasi-step growth mode change into layer-layer growth mode with the growth temperature decreasing from 1050℃ to 650℃ during the IM-GaN layer growing. It is speculated that the growth mode is determined by the diffusion length of adatom on the growing surface, which is proportional to the growth temperature. In the case of IM-GaN grown at low temperature, the formation of hillocks can be suppressed by reducing the adatom diffusion length. Finally, High crystal quality GaN homoepitaxy films (2 m) without hillocks is achieved by optimizing the growth parameters of IM-GaN layer, which is about 150 nm in thickness and grown at 850℃. The crystal quality of GaN homoepitaxy film is assessed by XRD rocking curve measured with double-crystal optics. The FWHMs of the (002) and (102) peaks are 125arcsec and 85arcsec respectively, indicating that rather low TDD is formed in the film. And well defined steps are observed on the image of AFM test, the root-mean square roughness value of the which is only about 0.23 nm for 5 m5 m scan area.
      通信作者: 罗伟科, luowk688@163.com
    • 基金项目: 国家自然科学基金(批准号:61505181,61474101,61504125)、国家高技术研究发展计划(批准号:2015AA016800,2015AA033300)和国家重点研发计划(批准号:2016YFB0400902)资助的课题.
      Corresponding author: Luo Wei-Ke, luowk688@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61505181, 61474101, 61504125), the National High Technology Research and Development Program of China (Grant Nos. 2015AA016800, 2015AA033300) and the National Key Research and Development Program of China (Grant No. 2016YFB0400902).
    [1]

    Palacios T, Chakraborty A, Rajan S, Rajan S, Poblenz C, Keller S, DenBaars S P, Speck J S, Mishra U K 2005 IEEE Elec. Dev. Lett. 26 781

    [2]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [3]

    Limb J B, Xing H, Moran B, McCarthy L, DenBaars S P, Mishra U K 2000 Appl. Phys. Lett. 76 2457

    [4]

    Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T, Su S C 2016 Chin. Phys. B 25 088505

    [5]

    LiuY L, Jin P, Liu G, Wang WY, Qi Z Q, Chen C Q, Wang Z G 2016 Chin. Phys. B 25 087801

    [6]

    Kikkawa T 2005 Jpn. J. Appl. Phys. 44 4896

    [7]

    Zhang J Q, Wang L, Li L A, Wang Q P, Jiang Y, Zhu H C, Ao J P 2016 Chin. Phys. B 25

    [8]

    Duan X L, Zhang J C, Xiao M, Zhao Y, Ning J, Hao Y 2016 Chin. Phys. B 25 087304

    [9]

    Killat N, Montes M, Paskova T, Evans K R, Leach J, Li X, Özgr , Morkoç H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D, Kuball M 2013 Appl. Phys. Lett. 103 193507

    [10]

    Oehlern F, Zhu T, Kappers M J, Kappers M J, Humphreys C J, Oliver R A 2013 J. Cryst. Growth 383 12

    [11]

    Zhou K, Liu J, Zhang S M, Li Z C, Feng M X, Li D Y, Zhang L Q, Wang F, Zhu J J, Yang H 2013 J. Cryst. Growth 371 7

    [12]

    Kizilyalli I C, Buiquang P, Disney D, Bhatia H, Aktas O 2015 Microelectron. Reliab. 55 1654

    [13]

    Kubo S, Nanba Y, Okazaki T, Manabe S, Kurai S, Taguchi T 2002 J. Cryst. Growth 236 66

    [14]

    Leszczynskia M, Beaumont B, Frayssinet E, Knap W, Prystawko P, Suski T, Grzegory T, Porowski S 1999 Appl. Phys. Lett. 75 1276

    [15]

    Okada S, Miyake H, Hiramatsu K, Miyagawa R, Eryu O, Hashizume T 2016 Jpn. J. Appl. Phys. 55 01AC08

    [16]

    Cho Y, Ha J S, Jung M, Lee H J, Park S, Park J, Fujii K, Toba R, Yi S, Kil G S, Chang J, Yao T 2010 J. Cryst. Growth 312 1693

    [17]

    Tian W, Yan W Y, Dai J N, Li S L, Tian Y, Hui X, Zhang J B, Fang Y Y, Wu Z H, Chen C Q 2013 J. Phys. D: Appl. Phys. 46 065303

    [18]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [19]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [20]

    Scheel H J 2001 J. Cryst. Growth 211 1

    [21]

    Tanabe S, Watanabe N, Uchida N, Matsuzaki H 2016 Phys. Status Solidi A 213 1236

    [22]

    Corrion A L, Wu F, Speck J S 2012 J. Appl. Phys. 112 054903

    [23]

    Perret E, Highland M J, Stephenson G B, Streiffer S K, Zapol P, Fuoss P H, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

  • [1]

    Palacios T, Chakraborty A, Rajan S, Rajan S, Poblenz C, Keller S, DenBaars S P, Speck J S, Mishra U K 2005 IEEE Elec. Dev. Lett. 26 781

    [2]

    Webb J B, Tang H, Rolfe S, Bardwell J A 1999 Appl. Phys. Lett. 75 953

    [3]

    Limb J B, Xing H, Moran B, McCarthy L, DenBaars S P, Mishra U K 2000 Appl. Phys. Lett. 76 2457

    [4]

    Qin P, Song W D, Hu W X, Zhang Y W, Zhang C Z, Wang R P, Zhao L L, Xia C, Yuan S Y, Yin Y A, Li S T, Su S C 2016 Chin. Phys. B 25 088505

    [5]

    LiuY L, Jin P, Liu G, Wang WY, Qi Z Q, Chen C Q, Wang Z G 2016 Chin. Phys. B 25 087801

    [6]

    Kikkawa T 2005 Jpn. J. Appl. Phys. 44 4896

    [7]

    Zhang J Q, Wang L, Li L A, Wang Q P, Jiang Y, Zhu H C, Ao J P 2016 Chin. Phys. B 25

    [8]

    Duan X L, Zhang J C, Xiao M, Zhao Y, Ning J, Hao Y 2016 Chin. Phys. B 25 087304

    [9]

    Killat N, Montes M, Paskova T, Evans K R, Leach J, Li X, Özgr , Morkoç H, Chabak K D, Crespo A, Gillespie J K, Fitch R, Kossler M, Walker D E, Trejo M, Via G D, Blevins J D, Kuball M 2013 Appl. Phys. Lett. 103 193507

    [10]

    Oehlern F, Zhu T, Kappers M J, Kappers M J, Humphreys C J, Oliver R A 2013 J. Cryst. Growth 383 12

    [11]

    Zhou K, Liu J, Zhang S M, Li Z C, Feng M X, Li D Y, Zhang L Q, Wang F, Zhu J J, Yang H 2013 J. Cryst. Growth 371 7

    [12]

    Kizilyalli I C, Buiquang P, Disney D, Bhatia H, Aktas O 2015 Microelectron. Reliab. 55 1654

    [13]

    Kubo S, Nanba Y, Okazaki T, Manabe S, Kurai S, Taguchi T 2002 J. Cryst. Growth 236 66

    [14]

    Leszczynskia M, Beaumont B, Frayssinet E, Knap W, Prystawko P, Suski T, Grzegory T, Porowski S 1999 Appl. Phys. Lett. 75 1276

    [15]

    Okada S, Miyake H, Hiramatsu K, Miyagawa R, Eryu O, Hashizume T 2016 Jpn. J. Appl. Phys. 55 01AC08

    [16]

    Cho Y, Ha J S, Jung M, Lee H J, Park S, Park J, Fujii K, Toba R, Yi S, Kil G S, Chang J, Yao T 2010 J. Cryst. Growth 312 1693

    [17]

    Tian W, Yan W Y, Dai J N, Li S L, Tian Y, Hui X, Zhang J B, Fang Y Y, Wu Z H, Chen C Q 2013 J. Phys. D: Appl. Phys. 46 065303

    [18]

    Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P, Speck J S 1996 Appl. Phys. Lett. 68 643

    [19]

    Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145

    [20]

    Scheel H J 2001 J. Cryst. Growth 211 1

    [21]

    Tanabe S, Watanabe N, Uchida N, Matsuzaki H 2016 Phys. Status Solidi A 213 1236

    [22]

    Corrion A L, Wu F, Speck J S 2012 J. Appl. Phys. 112 054903

    [23]

    Perret E, Highland M J, Stephenson G B, Streiffer S K, Zapol P, Fuoss P H, Munkholm A, Thompson C 2014 Appl. Phys. Lett. 105 051602

  • [1] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构.  , 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [2] 李建军, 崔屿峥, 付聪乐, 秦晓伟, 李雨畅, 邓军. 具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用.  , 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [3] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备.  , 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [4] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料.  , 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [5] 王保柱, 张秀清, 张奥迪, 周晓然, Bahadir Kucukgok, Na Lu, 肖红领, 王晓亮, Ian T. Ferguson. 金属有机物化学气相沉积生长GaN薄膜的室温热电特性研究.  , 2015, 64(4): 047202. doi: 10.7498/aps.64.047202
    [6] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理.  , 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [7] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能.  , 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [8] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性.  , 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [9] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究.  , 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [10] 崔影超, 谢自力, 赵红, 梅琴, 李弋, 刘斌, 宋黎红, 张荣, 郑有炓. 利用金属有机物化学气相沉积技术生长的a面GaN表面形貌和位错的研究.  , 2009, 58(12): 8506-8510. doi: 10.7498/aps.58.8506
    [11] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响.  , 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [12] 刘启佳, 邵勇, 吴真龙, 徐洲, 徐峰, 刘斌, 谢自力, 陈鹏. 生长温度对AlGaInN四元合金薄膜性质的影响.  , 2009, 58(10): 7194-7198. doi: 10.7498/aps.58.7194
    [13] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究.  , 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [14] 王叶安, 秦福文, 吴东江, 吴爱民, 徐 茵, 顾 彪. 基于电子回旋共振-等离子体增强金属有机物化学气相沉积技术生长GaMnN稀磁半导体的研究.  , 2008, 57(1): 508-513. doi: 10.7498/aps.57.508
    [15] 王国栋, 张 旺, 张文华, 李宗木, 徐法强. Fe/ZnO(0001)界面的同步辐射光电子能谱研究.  , 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [16] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究.  , 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [17] 马 宏, 朱光喜, 陈四海, 易新建. 金属有机化学气相外延生长1310nm偏振无关混合应变量子阱半导体光放大器研究.  , 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [18] 陈敦军, 沈 波, 张开骁, 邓咏桢, 范 杰, 张 荣, 施 毅, 郑有炓. GaN1-xPx薄膜的结构特性研究.  , 2003, 52(7): 1788-1791. doi: 10.7498/aps.52.1788
    [19] 卢励吾, 周洁, 封松林, 段树坤. 低压-金属有机物汽相外延生长的Ga1-xInxAs/InP激光器中深能级的研究.  , 1994, 43(5): 779-784. doi: 10.7498/aps.43.779
    [20] 齐鸣, 白樫淳一, 德光永辅, 野崎真次, 小长井诚, 高桥清, 罗晋生. 掺碳p型GaAs和InGaAs的金属有机物分子束外延生长.  , 1993, 42(12): 1956-1962. doi: 10.7498/aps.42.1956
计量
  • 文章访问数:  6355
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-10
  • 修回日期:  2017-03-09
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map