搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀关联随机电磁光束的产生

昌成成 蒲继雄 陈子阳 陈旭东

引用本文:
Citation:

非均匀关联随机电磁光束的产生

昌成成, 蒲继雄, 陈子阳, 陈旭东

Generation of non-uniformly correlated stochastic electromagnetic beams

Chang Cheng-Cheng, Pu Ji-Xiong, Chen Zi-Yang, Chen Xu-Dong
PDF
导出引用
  • 从理论和实验两方面对非均匀关联随机电磁光束的产生进行了研究.在理论上基于相位关联与相干度的联系推导出非均匀关联随机电磁光束的22交叉谱密度矩阵及相干性分布.理论分析表明,这种非均匀关联随机电磁光束中两点间的相干度不仅和两点间距有关,而且和两点的位置有关.在实验上,利用两个相位型液晶空间光调制器对入射的完全相干光的两个偏振分量分别加载随机相位调制,并测量了随机电磁光束的相干度分布.实验结果表明,光束中间距相等的两点之间的相干度随着两点与光斑中心的距离的增加而减小.实验结果与理论结果一致.这种非均匀关联的随机电磁光束在自由空间光通信和激光微操控等领域具有广阔的应用前景.
    Until now, there have been many reports concerning the generation and propagation of partially coherent beams due to their less influencing ability in turbulent atmosphere and random media. Of particular interest, a Gaussian-Schell model beam has been widely chosen as a special example of partially coherent beam, since its spatial coherence degree is dependent on position only through the difference between the two position vectors. In the scalar domain, many coherent models have been well studied such as Gaussian and multi-Gaussian Schell-model sources, Bessel-Gaussian and Laguerre-Gaussian Schell-model sources and so on. Based on the theory for devising genuine cross-spectral density matrices for a stochastic electromagnetic beam, several scalar models have been also extended to the electromagnetic domain. In recent years, the propagation of partially coherent beams with spatially varying and non-uniform correlations has become a hot topic, because of their interesting characteristics such as locally sharpened and laterally shifted intensity maxima. In one of our previous studies, we have experimentally investigated the generation of non-uniformly correlated partially coherent beams. However, to the best of our knowledge, so far, there has been no investigation on the generation of non-uniformly correlated stochastic electromagnetic beams. In this paper, we theoretically and experimentally investigate the generation of non-uniformly correlated stochastic electromagnetic beams. Based on the relation between phase correlation and optical coherence, we investigate the 22 cross-spectral density matrix and the coherence distribution of the non-uniformly correlated stochastic electromagnetic beam we generated. It is shown that the coherence degree between two points in the generated beam depends not only on the distance between them, but also on the distances between the points and the center of the beam. In experiment, we use the Matlab rand function to generate a random phase pattern with uniform distribution. The modulation magnitudes of different positions are different and follow an inverse Gaussian distribution in position. Dynamic phase patterns are created from a series of random grey-scale images. Two phase-only liquid crystal spatial light modulators are employed to display computer-generated dynamic phase patterns and modulate the two orthogonally polarized components of the incident coherent light, respectively, and generate a stochastic electromagnetic beam. We measure the correlation distribution of the generated beam in Young's two-pinhole experiment. It is shown that the experimental observations are in agreement with our theoretical analyses. Other kinds of non-uniformly correlated stochastic electromagnetic beams can also be obtained by this approach. Non-uniformly correlated stochastic electromagnetic beams may have some applications in optical manipulation and free-space optical communication.
      通信作者: 陈旭东, chenxd@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61605049,61575070,11304104,11674111)和华侨大学研究生科研创新能力培育计划资助的课题.
      Corresponding author: Chen Xu-Dong, chenxd@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605049, 61575070, 11304104, 11674111) and the Subsidized Project for Cultivating Postgraduates' Innovative Ability in Scientific Research of Huaqiao University, China.
    [1]

    Mei Z R 2014Opt.Lett. 39 4188

    [2]

    Wang F, Korotkova O 2016Opt.Lett. 41 516

    [3]

    Hyde M W, Basu S, Voelz D G, Xiao X F 2015Opt.Eng.Lett. 54 120501

    [4]

    Pu J X, Dong M M, Wang T 2006Appl.Opt. 45 7553

    [5]

    Wang Y X, Meng P H, Wang D Y, Rong L, Panezai S 2013Opt.Express 21 19568

    [6]

    Redding B, Choma M A, Cao H 2012Nat.Photonics 6 355

    [7]

    Ryczkowski P, Turunen J, Friberg A T, Genty G 2016Sci.Rep. 6 22126

    [8]

    Gora M J, Sauk J S, Carruth R W 2013Nat.Med. 19 238

    [9]

    Arpali, Arpali S A, Baykal Y, Eyyuboğlu H T 2010Appl.Phys.B 103 237

    [10]

    Avramov-Zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016Opt.Commun. 359 207

    [11]

    Wang X Y, Yao M W, Qiu Z L, Yi X, Liu Z J 2015Opt.Express 23 12508

    [12]

    Zhu Q Z, Wu F T, Hu R, Feng C 2016Acta Phys.Sin. 65 184101(in Chinese)[朱清智, 吴逢铁, 胡润, 冯聪2016 65 184101]

    [13]

    Mei Z R, Mao Y H 2014Opt.Express 22 22534

    [14]

    Lajunen H, Saastamoinen T 2011Opt.Lett. 36 4104

    [15]

    Zhang L, Chen Z Y, Cui S W, Liu J L, Pu J X 2015Acta Phys.Sin. 64 034205(in Chinese)[张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄2015 64 034205]

    [16]

    Mei Z R, Tong Z S, Korotkova O 2012Opt.Express 20 26458

    [17]

    Tong Z S, Korotkova O 2012J.Opt.Soc.Am.A 29 2154

    [18]

    Gu Y, Gbur G 2013Opt.Lett. 38 1395

    [19]

    Cui S W, Chen Z Y, Zhang L, Pu J X 2013Opt.Lett. 38 4821

    [20]

    Chen X D, Chang C C, Chen Z Y, Lin Z L, Pu J X 2016Opt.Express 24 21587

    [21]

    Wolf E 2007Introduction to the Theory of Coherence and Polarization of Light(Cambridge:Cambridge University Press) pp174-179

    [22]

    Tervo J, SetlT, Friberg A T 2012Opt.Lett. 37 151

    [23]

    Wolf E 2003Phys.Lett.A 312 263

    [24]

    Shirai T, Wolf E 2004J.Opt.Soc.Am.A 21 1907

  • [1]

    Mei Z R 2014Opt.Lett. 39 4188

    [2]

    Wang F, Korotkova O 2016Opt.Lett. 41 516

    [3]

    Hyde M W, Basu S, Voelz D G, Xiao X F 2015Opt.Eng.Lett. 54 120501

    [4]

    Pu J X, Dong M M, Wang T 2006Appl.Opt. 45 7553

    [5]

    Wang Y X, Meng P H, Wang D Y, Rong L, Panezai S 2013Opt.Express 21 19568

    [6]

    Redding B, Choma M A, Cao H 2012Nat.Photonics 6 355

    [7]

    Ryczkowski P, Turunen J, Friberg A T, Genty G 2016Sci.Rep. 6 22126

    [8]

    Gora M J, Sauk J S, Carruth R W 2013Nat.Med. 19 238

    [9]

    Arpali, Arpali S A, Baykal Y, Eyyuboğlu H T 2010Appl.Phys.B 103 237

    [10]

    Avramov-Zamurovic S, Nelson C, Guth S, Korotkova O, Malek-Madani R 2016Opt.Commun. 359 207

    [11]

    Wang X Y, Yao M W, Qiu Z L, Yi X, Liu Z J 2015Opt.Express 23 12508

    [12]

    Zhu Q Z, Wu F T, Hu R, Feng C 2016Acta Phys.Sin. 65 184101(in Chinese)[朱清智, 吴逢铁, 胡润, 冯聪2016 65 184101]

    [13]

    Mei Z R, Mao Y H 2014Opt.Express 22 22534

    [14]

    Lajunen H, Saastamoinen T 2011Opt.Lett. 36 4104

    [15]

    Zhang L, Chen Z Y, Cui S W, Liu J L, Pu J X 2015Acta Phys.Sin. 64 034205(in Chinese)[张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄2015 64 034205]

    [16]

    Mei Z R, Tong Z S, Korotkova O 2012Opt.Express 20 26458

    [17]

    Tong Z S, Korotkova O 2012J.Opt.Soc.Am.A 29 2154

    [18]

    Gu Y, Gbur G 2013Opt.Lett. 38 1395

    [19]

    Cui S W, Chen Z Y, Zhang L, Pu J X 2013Opt.Lett. 38 4821

    [20]

    Chen X D, Chang C C, Chen Z Y, Lin Z L, Pu J X 2016Opt.Express 24 21587

    [21]

    Wolf E 2007Introduction to the Theory of Coherence and Polarization of Light(Cambridge:Cambridge University Press) pp174-179

    [22]

    Tervo J, SetlT, Friberg A T 2012Opt.Lett. 37 151

    [23]

    Wolf E 2003Phys.Lett.A 312 263

    [24]

    Shirai T, Wolf E 2004J.Opt.Soc.Am.A 21 1907

  • [1] 徐华锋, 张兴宇, 王仁杰. 部分相干多离轴涡旋矢量光束的传输特性.  , 2024, 73(3): 034201. doi: 10.7498/aps.73.20231484
    [2] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄. 非均匀关联径向偏振部分相干光的产生.  , 2019, 68(7): 074201. doi: 10.7498/aps.68.20182289
    [3] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展.  , 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [4] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性.  , 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [5] 郑尚彬, 唐碧华, 姜云海, 高曾辉, 罗亚梅. 随机电磁光束经像散透镜后磁场的光谱Stokes奇点.  , 2016, 65(23): 234201. doi: 10.7498/aps.65.234201
    [6] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响.  , 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [7] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较.  , 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [8] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输.  , 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [9] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性.  , 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [10] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径.  , 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [11] 郑建洲, 于清旭, 关寿华, 董斌, 曹晓君, 芦永军, 吴云峰. 利用部分相干光和同心角偏差透镜列阵实现二维靶面均匀辐照.  , 2012, 61(15): 154205. doi: 10.7498/aps.61.154205
    [12] 黎昌金, 吕百达. 非傍轴部分相干厄米-高斯光束的相干和非相干合成.  , 2009, 58(9): 6192-6201. doi: 10.7498/aps.58.6192
    [13] 程科, 吕百达. 四个部分相干点源的完全相消干涉特性.  , 2009, 58(1): 250-257. doi: 10.7498/aps.58.250
    [14] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响.  , 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [15] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计.  , 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [16] 黄春福, 郭 儒, 刘思敏. 多个部分非相干光孤子的相互作用.  , 2007, 56(2): 908-915. doi: 10.7498/aps.56.908
    [17] 肖 瑞, 周 朴, 侯 静, 姜宗福, 刘 明. 激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响.  , 2007, 56(2): 819-823. doi: 10.7498/aps.56.819
    [18] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性.  , 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [19] 王晓生, 佘卫龙. 部分空间非相干光光伏空间孤子.  , 2002, 51(3): 573-577. doi: 10.7498/aps.51.573
    [20] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性.  , 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
计量
  • 文章访问数:  6702
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-02
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map