搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机电磁光束经像散透镜后磁场的光谱Stokes奇点

郑尚彬 唐碧华 姜云海 高曾辉 罗亚梅

引用本文:
Citation:

随机电磁光束经像散透镜后磁场的光谱Stokes奇点

郑尚彬, 唐碧华, 姜云海, 高曾辉, 罗亚梅

Magnetic spectral Stokes singularities of stochastic electromagnetic beams through an astigmatic lens

Zheng Shang-Bin, Tang Bi-Hua, Jiang Yun-Hai, Gao Zeng-Hui, Luo Ya-Mei
PDF
导出引用
  • 利用交叉谱密度函数的传输公式,以部分相干刃型位错光束为例,推导出随机电磁光束磁场通过像散透镜传输后的解析表达式.使用光谱Stokes参数,详细讨论了光谱Stokes场的奇点变化规律.结果表明,随机电磁光束磁场通过透镜后的传输过程中,存在光谱s12,s23和s31奇点.改变刃型位错的离轴量、斜率、空间相关长度等光束参数以及随着传输距离的变化,会有磁场光谱Stokes奇点的移动、产生和湮没,也会有V点的产生和C点旋向性的反转.此外,还与电场的光谱Stokes奇点做了比较.
    Much interest has been aroused in the polarization singularities. A new technique for metrology called singular Stokes polarimetry based on the detection of polarization singularities has been recently developed and used to detect deformations and displacements of samples on a submicron scale, to measure the topology of polarized speckle field and to study the biomedicine as well. The polarization singularities have been extensively studied theoretically, numerically and experimentally. However, most of the studiesare restricted within the frameworks of the fully coherent wave-fields. By using the spectral Stokes parameters introduced by Korotkova and Wolf[Korotkova O, Wolf E 2005 Opt. Lett. 30 198], Yan and L[Yan H, L B 2009 Opt. Lett. 34 1933] have extended the concept of the polarization singularities from fully coherent beams to partially coherent beams. On the other hand, Hajnal[Hajnal J V 1990 Proc. R. Soc. Lond. A 430 413] studied the electric and magnetic polarization singularities in free-space propagation experimentally with microwaves and confirmed that the electric and magnetic polarization singularities are not coincident in general. In this paper, taking the partially coherent edge dislocation beam for example, the explicit magnetic propagation expression for stochastic electromagnetic beam through an astigmatic lens is derived based on the representation of cross-spectral density matrix propagation. Using the spectral Stokes parameters the magnetic spectral singularities are studied in detail. It is shown that there exist magnetic spectral s12, s23 and s31 singularities of stochastic electromagnetic beams through an astigmatic lens. The magnetic spectral Stokes singularities correspond to the zero points of complex Stokes fields sij=0. s12 singularity corresponds to the circular polarization (C-point) of partially coherent beam, and s3 0(s30) means right-(left-) handedness, where the orientations of the major and minor axes of the polarization ellipse become undefined. s23 and s31 singularities must be located on L-lines, where the handedness of the polarization ellipse is undetermined (linear polarization). By suitably varying a control parameter, such as off-axis distance, slope of edge dislocation, spatial correlation length, and astigmatic coefficient or propagation distance, the motion, creation, and annihilation of magnetic spectral Stokes singularities may appear. It has been shown that a pair of C-points with equal but opposite topological charges and with similar handedness may be created or annihilated. The V point and handedness reversal of C point may take place. Compared with the electric spectral Stokes singularities of stochastic electromagnetic beams, the positions are not the same, and the left- and right-handedness spaces do not coincide. The results obtained in this paper would be useful for an in-depth understanding of polarization singularities of stochastic electromagnetic beams.
      通信作者: 罗亚梅, luoluoeryan@126.com
    • 基金项目: 国家自然科学基金(批准号:61275203,61505075)和四川省教育厅自然科学基金(批准号:15CZ0017)资助的课题.
      Corresponding author: Luo Ya-Mei, luoluoeryan@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275203, 61505075) and the Natural Science Foundation of the Education Department of Sichuan Province, China (Grant No. 15CZ0017).
    [1]

    Nye J F, Hajnal J V 1987 Proc. R. Soc. Lond. A 409 21

    [2]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [3]

    Nye J F 1999 Natural Focusing and the Fine Structure of Light (UK:IOP Publishing, Bristol) pp373-381

    [4]

    Berry M V, Dennis M R 2001 Proc. R. Soc. Lond. A 457 141

    [5]

    Konukhov A I, Melnikov L A 2001 J. Opt. B 3 S139

    [6]

    Freund I 2001 Opt. Lett. 26 1996

    [7]

    Freund I 2002 Opt. Commun. 201 251

    [8]

    Mokhun A I, Soskin M S, Freund I 2002 Opt. Lett. 27 995

    [9]

    Freund I, Mokhun A I, Soskin M S, Angelsky O V, Mokhun I I 2002 Opt. Lett. 27 545

    [10]

    Angelsky O, Mokhun A, Mokhun I, Soskin M 2002 Opt. Commun. 207 57

    [11]

    Angelsky O V, Mokhum I I, Mokhum A I 2002 Phys. Rev. E 65 036602

    [12]

    Soskin M S, Denisenko V, Freund I 2003 Opt. Lett. 28 1475

    [13]

    Flossmann F, Schwarz U T, Maier M, Dennis M R 2005 Phys. Rev. Lett. 95 253901

    [14]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733

    [15]

    Dennis M R 2008 Opt. Lett. 33 2572

    [16]

    Felde C V, Chernyshov A A, Bogatyryova G V, Polyanskii P V, Soskin M S 2008 JETP Lett. 88 418

    [17]

    Chernyshov A A, Felde C V, Bogatyryova H V, Polyanskii P V, Soskin M S 2009 J. Opt. A:Pure Appl. Opt. 11 094010

    [18]

    Yan H, L B 2009 Opt. Lett. 34 1933

    [19]

    Soskin M S, Denisenko V G, Egorov R I 2004 Proc. of SPIE 5458 79

    [20]

    Bliokh K Y, Niv A, Kleiner V 2008 Opt. Express 16 695

    [21]

    Korotkova O, Wolf E 2005 Opt. Lett. 30 198

    [22]

    Luo Y M, L B D 2010 J. Opt. 12 115703

    [23]

    Hajnal J V 1990 Proc. R. Soc. Lond. A 430 413

    [24]

    Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 475

    [25]

    Luo Y M, L B D, Tang B H, Zhu Y 2012 Acta Phys. Sin. 61 134202 (in Chinese)[罗亚梅, 吕百达, 唐碧华, 朱渊2012 61 134202]

    [26]

    Luo Y M, Gao Z H, Tang B H, L B D 2013 J. Opt. Soc. Am. A 30 1646

    [27]

    Liu L H, L W Y, Yang C, Mai C J, Chen D P 2015 Acta Phys. Sin. 64 034208 (in Chinese)[刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏2015 64 034208]

    [28]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge:Cambridge University Press) pp174-201

    [29]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164

  • [1]

    Nye J F, Hajnal J V 1987 Proc. R. Soc. Lond. A 409 21

    [2]

    Soskin M S, Vasnetsov M V 2001 Prog. Opt. 42 219

    [3]

    Nye J F 1999 Natural Focusing and the Fine Structure of Light (UK:IOP Publishing, Bristol) pp373-381

    [4]

    Berry M V, Dennis M R 2001 Proc. R. Soc. Lond. A 457 141

    [5]

    Konukhov A I, Melnikov L A 2001 J. Opt. B 3 S139

    [6]

    Freund I 2001 Opt. Lett. 26 1996

    [7]

    Freund I 2002 Opt. Commun. 201 251

    [8]

    Mokhun A I, Soskin M S, Freund I 2002 Opt. Lett. 27 995

    [9]

    Freund I, Mokhun A I, Soskin M S, Angelsky O V, Mokhun I I 2002 Opt. Lett. 27 545

    [10]

    Angelsky O, Mokhun A, Mokhun I, Soskin M 2002 Opt. Commun. 207 57

    [11]

    Angelsky O V, Mokhum I I, Mokhum A I 2002 Phys. Rev. E 65 036602

    [12]

    Soskin M S, Denisenko V, Freund I 2003 Opt. Lett. 28 1475

    [13]

    Flossmann F, Schwarz U T, Maier M, Dennis M R 2005 Phys. Rev. Lett. 95 253901

    [14]

    Schoonover R W, Visser T D 2006 Opt. Express 14 5733

    [15]

    Dennis M R 2008 Opt. Lett. 33 2572

    [16]

    Felde C V, Chernyshov A A, Bogatyryova G V, Polyanskii P V, Soskin M S 2008 JETP Lett. 88 418

    [17]

    Chernyshov A A, Felde C V, Bogatyryova H V, Polyanskii P V, Soskin M S 2009 J. Opt. A:Pure Appl. Opt. 11 094010

    [18]

    Yan H, L B 2009 Opt. Lett. 34 1933

    [19]

    Soskin M S, Denisenko V G, Egorov R I 2004 Proc. of SPIE 5458 79

    [20]

    Bliokh K Y, Niv A, Kleiner V 2008 Opt. Express 16 695

    [21]

    Korotkova O, Wolf E 2005 Opt. Lett. 30 198

    [22]

    Luo Y M, L B D 2010 J. Opt. 12 115703

    [23]

    Hajnal J V 1990 Proc. R. Soc. Lond. A 430 413

    [24]

    Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 475

    [25]

    Luo Y M, L B D, Tang B H, Zhu Y 2012 Acta Phys. Sin. 61 134202 (in Chinese)[罗亚梅, 吕百达, 唐碧华, 朱渊2012 61 134202]

    [26]

    Luo Y M, Gao Z H, Tang B H, L B D 2013 J. Opt. Soc. Am. A 30 1646

    [27]

    Liu L H, L W Y, Yang C, Mai C J, Chen D P 2015 Acta Phys. Sin. 64 034208 (in Chinese)[刘李辉, 吕炜煜, 杨超, 麦灿基, 陈德鹏2015 64 034208]

    [28]

    Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge:Cambridge University Press) pp174-201

    [29]

    Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164

  • [1] 林丹樱, 武泽凯, 于斌, 黄黎琳, 张潇, 屈军乐. 正交像散高密度三维单分子定位显微的数值模拟.  , 2022, 71(12): 128701. doi: 10.7498/aps.71.20212091
    [2] 胡婧, 王欢, 季小玲. Kerr非线性介质中聚焦像散高斯光束的传输特性.  , 2021, 70(7): 074205. doi: 10.7498/aps.70.20201661
    [3] 杨艳飞, 陈婧, 吴逢铁, 胡润, 张惠忠, 胡汉青. 像散Bessel光束自重建特性的理论和实验研究.  , 2018, 67(22): 224201. doi: 10.7498/aps.67.20181416
    [4] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性.  , 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [5] 昌成成, 蒲继雄, 陈子阳, 陈旭东. 非均匀关联随机电磁光束的产生.  , 2017, 66(5): 054212. doi: 10.7498/aps.66.054212
    [6] 朱洁, 朱开成. 像散正弦-高斯光束的分数傅里叶变换与椭圆空心光束产生.  , 2016, 65(20): 204204. doi: 10.7498/aps.65.204204
    [7] 郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉. 部分相干刃型位错光束的谱Stokes奇点.  , 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [8] 罗亚梅, 高曾辉, 唐碧华, 吕百达. 聚焦高斯涡旋光束焦区电场和磁场的偏振奇点.  , 2014, 63(15): 154201. doi: 10.7498/aps.63.154201
    [9] 陆大全. 强非局域非线性介质中的形变像散椭圆呼吸子.  , 2013, 62(14): 144209. doi: 10.7498/aps.62.144209
    [10] 刘曼. 高斯型弱散射屏产生的像面散斑场的分布特性研究.  , 2013, 62(9): 094204. doi: 10.7498/aps.62.094204
    [11] 刘晓丽, 冯国英, 李玮, 唐淳, 周寿桓. 像散椭圆高斯光束的M2因子矩阵的理论与实验研究.  , 2013, 62(19): 194202. doi: 10.7498/aps.62.194202
    [12] 罗亚梅, 吕百达, 唐碧华, 朱渊. 高斯涡旋光束在自由空间传输中电场和磁场的偏振奇点.  , 2012, 61(13): 134202. doi: 10.7498/aps.61.134202
    [13] 赵贵燕, 张逸新, 王建宇, 贾建军. 大气湍流像差散焦和像散与高斯涡旋光束焦面光强.  , 2010, 59(2): 1378-1384. doi: 10.7498/aps.59.1378
    [14] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析.  , 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] 江新光, 吴逢铁. 像散对轴棱锥衍射特性的影响与修正.  , 2008, 57(7): 4202-4207. doi: 10.7498/aps.57.4202
    [16] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究.  , 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [17] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究.  , 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [18] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究.  , 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [19] 张宁玉, 滕树云, 董前民, 亓东平, 程传福. 变孔径像面散斑平均光强标定随机表面的理论与实验.  , 2001, 50(5): 865-870. doi: 10.7498/aps.50.865
    [20] 姚焜, 许广宇, 郭光灿, 彭虎, 周佩玲. 双光束干涉产生的动态散斑.  , 1992, 41(2): 238-243. doi: 10.7498/aps.41.238
计量
  • 文章访问数:  5927
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-16
  • 修回日期:  2016-09-08
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map