搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于三体系统玻色-爱因斯坦关联的事件混合方法

何庆华

引用本文:
Citation:

用于三体系统玻色-爱因斯坦关联的事件混合方法

何庆华

Event mixing constraints for Bose-Einstein correlations in reactions with three particles in the final state

He Qing-Hua
PDF
导出引用
  • 玻色-爱因斯坦关联(BEC)可以用于测量粒子出射区的时间空间性质,事件混合方法是用于观测BEC效应的常用手段,对于相对论能区重离子碰撞等可以产生大量全同末态粒子的反应,这种方法具有独特优势.但是对于末态粒子数非常有限的反应,守恒关系、共振态和一些其他原因引起的关联,对事件混合方法产生不可忽视的干扰,事件混合在消除玻色-爱因斯坦关联的同时也消除了其他所有的关联,严重制约了BEC研究.本文探索一种适合末态只有两个全同玻色子的三体反应系统的事件混合方法,提出了五种可行的事件混合限制条件,采用数值模拟研究了不同限制条件对事件混合的效果,甄别出最优的限制条件.测试结果显示,当要求混合事件的丢失质量与原始反应一致,并将原始事件样本中玻色子能量高于某一给定值的事件剔除掉,这种限制条件下得到的事件混合结果最优,可以用于观测BEC效应.另外,要求两个交换玻色子的方位角一致时得到的结果也较优,相比前者,此限制条件不需要删除一部分事件,可以得到更好的统计误差.
    Bose-Einstein correlations (BEC) are widely used to gain an insight into the spatiotemporal characteristics of boson emitters. It was used for the first time in the 1950s by R. Hanbury-Brown and R. Q. Twiss[Hanbury-Brown R, Twiss R Q 1954 Phil. Mag. 45 663] in astronomy to measure the dimension of distant astronomical objects emitting photons, and hence is also known as Hanbury-Brown-Twiss effect (HBT). In nuclear and particle physics field, BEC also has important applications in the investigation of the space-time properties of subatomic reaction region, especially in elementary-particle collisions and relativistic heavy-ion collisions with large multiplicity at high energies. Its potential application in exclusive reactions with low multiplicity in the non-perturbative QCD energy region may offer complementary information like duration and size of nucleon resonances, which are generally excited by hadronic or electromagnetic probes and usually decay into the ground states accompanied by emission of identical mesons. However, the event mixing technique, which is highly adopted for BEC observations in inclusive reactions at high energies with large multiplicity cannot be directly applied to the BEC measurement in exclusive reactions with very limited multiplicity at low energies. The event mixing method produces un-correlated samples from original sample through making mixed events by randomly selecting the momenta of two bosons from different original events. It works well for the high multiplicity case because the degree of freedom of final state particles is large compared with that of the low multiplicity case. In exclusive reactions with a very limited number of identical bosons in the final state, this method is however strongly interfered by non-BEC factors such as global conservation laws and decays of resonances. Appropriate constraints are required to control the event mixing process in order to eliminate the influence of those non-BEC factors. In this study, we are trying to develop an event mixing method for BEC measurement in reactions having only three final state particles and only two identical bosons among them. For this end, five constraint modes for the event mixing are proposed and investigated via Monte Carlo simulation. Each mode employs one or a combination of the following cut conditions:1) missing mass cut (MM) that requires the missing mass of the mixed event to be equal to that of the original event; 2) polar angle consistency cut (PAC) that requires that the swapping particles should come from the same polar angle bin; 3) azimuthal angle consistency cut (AAC); 4) momentum consistency cut (MC); 5) energy upper limit cut (EU) that requires that any boson energy should not exceed a given upper limit. The double neutral pion photoproduction on the proton around 1 GeV is taken for example to demonstrate the effects of these constraints on the event mixing. In the simulation, one event sample free of BEC effects and four samples in the presence of BEC effects are generated for testing the ability for these constraints to extract BEC parameters. It is found the constraint mode using the MM and PAC cuts, and the mode employing the MM and AAC cuts, and the mode adopting the MM and the EU cuts can be used to observe BEC effects and extract BEC parameters. Among them, optimum results can be achieved by the combination of the MM and EU cuts.
      通信作者: 何庆华, hetsinghua@163.com
      Corresponding author: He Qing-Hua, hetsinghua@163.com
    [1]

    Gyulassy M, Kauffmann S K, Wilson L W 1979 Phys. Rev. C 20 2267

    [2]

    Boal D H, Gelbke C K, Jennings B K 1990 Rev. Mod. Phys. 62 553

    [3]

    L'Hôte D 1992 Nucl. Phys. A 545 381

    [4]

    Alexander G 2003 Rep. Prog. Phys. 66 481

    [5]

    He Q H 2014 Ph. D. Dissertation (Sendai, Japan:Tohoku University)

    [6]

    Hanbury-Brown R, Twiss R Q 1954 Philos. Mag. 45 663

    [7]

    Goldhaber G, Fowler W B, Goldhaber S, et al. 1959 Phys. Rev. Lett. 3 181

    [8]

    Goldhaber G, Goldhaber S, Lee W, Pais A 1960 Phys. Rev. 120 300

    [9]

    Khachatryan V, Sirunyan A M, Tumasyan A, et al. 2015 Chin. Phys. C 39 034103

    [10]

    Ren Y Y, Efaaf M J, Zhang W N 2010 Chin. Phys. C 34 472

    [11]

    Huo L, Zhang W N, Chen X J, Zhang J B, Tang G X 2003 High Energy Phys. Nucl. Phys. 27 53(in Chinese)[霍雷, 张卫宁, 陈相君, 张景波, 唐圭新2003高能物理与核物理27 53]

    [12]

    Kopylov G I 1974 Phys. Lett. B 50 472

    [13]

    Drijard D, Fischer H G 1984 Nucl. Instrum. Meth. A 225 367

    [14]

    Chajęcki Z for the STAR Collaboration 2007 Eur. Phys. J. C 49 81

    [15]

    Chajęcki Z, Lisa M 2008 Phys. Rev. C. 78 064903

    [16]

    Klaja P, Moskal P, Czerwinski E, et al. 2010 J. Phys. G:Nucl. Part. Phys. 37 055003

    [17]

    James F 1968 CERN 68 15

  • [1]

    Gyulassy M, Kauffmann S K, Wilson L W 1979 Phys. Rev. C 20 2267

    [2]

    Boal D H, Gelbke C K, Jennings B K 1990 Rev. Mod. Phys. 62 553

    [3]

    L'Hôte D 1992 Nucl. Phys. A 545 381

    [4]

    Alexander G 2003 Rep. Prog. Phys. 66 481

    [5]

    He Q H 2014 Ph. D. Dissertation (Sendai, Japan:Tohoku University)

    [6]

    Hanbury-Brown R, Twiss R Q 1954 Philos. Mag. 45 663

    [7]

    Goldhaber G, Fowler W B, Goldhaber S, et al. 1959 Phys. Rev. Lett. 3 181

    [8]

    Goldhaber G, Goldhaber S, Lee W, Pais A 1960 Phys. Rev. 120 300

    [9]

    Khachatryan V, Sirunyan A M, Tumasyan A, et al. 2015 Chin. Phys. C 39 034103

    [10]

    Ren Y Y, Efaaf M J, Zhang W N 2010 Chin. Phys. C 34 472

    [11]

    Huo L, Zhang W N, Chen X J, Zhang J B, Tang G X 2003 High Energy Phys. Nucl. Phys. 27 53(in Chinese)[霍雷, 张卫宁, 陈相君, 张景波, 唐圭新2003高能物理与核物理27 53]

    [12]

    Kopylov G I 1974 Phys. Lett. B 50 472

    [13]

    Drijard D, Fischer H G 1984 Nucl. Instrum. Meth. A 225 367

    [14]

    Chajęcki Z for the STAR Collaboration 2007 Eur. Phys. J. C 49 81

    [15]

    Chajęcki Z, Lisa M 2008 Phys. Rev. C. 78 064903

    [16]

    Klaja P, Moskal P, Czerwinski E, et al. 2010 J. Phys. G:Nucl. Part. Phys. 37 055003

    [17]

    James F 1968 CERN 68 15

  • [1] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质.  , 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [2] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [3] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学.  , 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [4] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉.  , 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [5] 徐岩, 樊炜, 陈兵, 南向红, 陈达, 周强, 张鲁殷. 自由膨胀准二维玻色-爱因斯坦凝聚中的密度-密度关联.  , 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [6] 李高清, 陈海军, 薛具奎. 一维双组分玻色-爱因斯坦凝聚体系的量子隧穿特性.  , 2010, 59(3): 1449-1455. doi: 10.7498/aps.59.1449
    [7] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应.  , 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [8] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩.  , 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [9] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [10] 徐岩, 贾多杰, 李照鑫, 侯风超, 谭磊, 张鲁殷. 大N近似下旋量玻色-爱因斯坦凝聚的基态能级分裂.  , 2009, 58(1): 55-60. doi: 10.7498/aps.58.55
    [11] 陈海军, 薛具奎. Bessel型光晶格中双组分玻色-爱因斯坦凝聚体的基态解.  , 2008, 57(7): 3962-3968. doi: 10.7498/aps.57.3962
    [12] 房永翠, 杨志安. 玻色-爱因斯坦凝聚体系中的混沌隧穿行为.  , 2008, 57(12): 7438-7446. doi: 10.7498/aps.57.7438
    [13] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿.  , 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [14] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制.  , 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [16] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学.  , 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [17] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [18] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质.  , 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [19] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [20] 张思溟, 叶 飞. 玻色-爱因斯坦凝聚体干涉现象的数值模拟.  , 1999, 48(6): 977-982. doi: 10.7498/aps.48.977
计量
  • 文章访问数:  5067
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-23
  • 修回日期:  2016-11-03
  • 刊出日期:  2017-01-20

/

返回文章
返回
Baidu
map