搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胶体排空相互作用理论与计算

马红孺

引用本文:
Citation:

胶体排空相互作用理论与计算

马红孺

Theory and calculations of colloidal depletion interaction

Ma Hong-Ru
PDF
导出引用
  • 胶体悬浮液由1 nm到1 m大小的颗粒悬浮在液体中构成. 胶体颗粒之间具有体积排斥相互作用和其他相互作用,体积排斥导致排空效应. 当大硬球处于小球构成的胶体中时,大球周围有 小球中心不能进入的排空层. 在大的硬球相互接近时,其排空层重合,使小球的自由体积增加,从而熵增加,导致大球之间的等效相互作用,这个相互作用称为排空相互作用. 本文介绍了胶体排空相互作用的概念和图像,简要介绍了 计算硬球排空相互作用的接受比率方法、Wang-Landau方法、密度泛函理论方法等数值方法;以Asakura-Oosawa模型为例,介绍了Derjaguin近似方法. 利用这个近似方法,推导了小硬球胶体中一对硬球、硬球和硬墙之间的排空相互作用,以及一对硬球在细棒胶体和薄盘胶体中的排空相互作用的近似公式.
    Colloidal suspension is composed of particles with sizes between 1 nm and 1 m, suspended in liquid phase. The interaction between the particles consists of a hard core repulsive interaction and other kinds of repulsive and attractive interacions. Hard interaction forbids the particles from occupying the same places, resulting in a depletion effect. When big colloid particles are immersed in a colloid of small particles, each big particle has a depletion layer where the small particles cannot enter due to the hard interaction. The depletion layers of two big particles overlap when they are close enough so that extra free volume of the small particles increases and therefore the entropy of the small particles increase, thus an effective interaction between big particles is induced. This effective interaction is the so-called depletion interaction. In this review the concepts and an intuitive explanation of depletion interaction of colloidal suspensions are presented. The numerical calculation methods, including the acceptance ratio method, Wang-Landau-type method, and density functional theory method, are briefly reviewed. Several useful analytic approximations are presented. Stating from the depletion interaction between two flat plates, the Derjaguin approximation is introduced through the Asakura- Oosawa model. With this approximation, the approximate formulas of depletion interaction between two hard spheres, between a hard sphere and a hard wall, and between a hard sphere and curved hard walls in a small hard sphere colloid are derived. The depletion interaction between two hard spheres in a thin rod colloid and a thin disk colloid are also derived in the Derjaguin approximation.
      通信作者: 马红孺, hrma@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11304169)资助的课题.
      Corresponding author: Ma Hong-Ru, hrma@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11304169).
    [1]

    Graham T 1861 Philosophical Transactions of the Royal Society of London 151 183

    [2]

    Brown R 1828 Philosophical Magazine Series 2 4 161

    [3]

    Einstein A 1905 Annalen der Physik 17 549

    [4]

    Matijevic E 1986 Langmuir 2 12

    [5]

    Matijevic E 1994 Langmuir 10 8

    [6]

    Snoeks E, van Blaaderen A, van Dillen T, van Kats C M, Brongersma M L, Polman A 2000 Adv. Mater. 12 1511

    [7]

    Hong L, Jiang S, Granick S 2006 Langmuir 22 9495

    [8]

    Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S 2010 Adv. Mater. 22 1060

    [9]

    Pusey P N (In Hansen J P, Levesque D, Zinn-Justin J editors) 1991 Liquids, Freezing and Glass Transition. II, chapter 10 (Amsterdam: North-Holland) p763

    [10]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids. Studies in Interface Science (Amsterdam: Elsevier Science)

    [11]

    Nägele G 1996 Phys. Reports 272 215

    [12]

    Klein R 1997 The Physics of Complex Systems (In Mallamace F, Stanley H E, Ed.) (Amsterdam: IOS Press) pp301-345

    [13]

    Likos C N 2001 Phys. Reports 348 267

    [14]

    Hansen J, McDonald I R 2013 Theory of Simple Liquids: With Applications to Soft Matter (New York: Academic Press)

    [15]

    Lekkerkerker H N W, Tuinier R 2011 Colloids and the Depletion Interaction (Heidelberg: Springer)

    [16]

    Derjaguin B V, Landau L 1941 Acta Physicochim. URSS 14 633

    [17]

    Verwey E F, Overbeek J T G 1948 Theory of the Stability of Lyophobic Colloids (Amsterdam: Elsevier)

    [18]

    London F 1930 Z. Phys. Chem. 11 222

    [19]

    Eisenschitz R, London F 1930 Zeitschrift fr Physik 60 491

    [20]

    Israelachvili J N 2011 Intermolecular and Surface Forces (3rd Ed.) (New York: Academic Press)

    [21]

    Asakura S, Oosawa F 1954 J. Chem. Phys. 22 1255

    [22]

    Vrij A 1976 Pure Appl. Chem. 48 471

    [23]

    Dinsmore A D, Warren P B, Poon W C K, Yodh A G 1997 EPL 40 337

    [24]

    Bartlett P, Ottewill R H, Pusey P N 1992 Phys. Rev. Lett. 68 3801

    [25]

    Eldridge M D, Madden P A, Frenkel D 1993 Molec. Phys. 79 105

    [26]

    Dinsmore A D, Yodh A G, Pine D J 1996 Nature 383 239

    [27]

    Onsager L 1933 Chem. Rev. 13 73

    [28]

    Onsager L 1949 Ann. NY Acad. Sci. 51 627

    [29]

    Attard P 1989 J. Chem. Phys. 91 3083

    [30]

    Götzelmann B, Evans R, Dietrich S 1998 Phys. Rev. E 57 6785

    [31]

    Bennett C H 1976 J. Comp. Phys. 22 245

    [32]

    Allen M P, Tildesley D J 1994 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [33]

    Li W H, Xue S, Ma H R 2001 J. Shanghai Jiao Tong Univ. E-6 126

    [34]

    Li W H, Ma H R 2002 Phys. Rev. E 66 061407

    [35]

    Li W H, Ma H R 2003 Eur. Phys. J. E 12 321

    [36]

    Li W H, Ma H R 2003 J. Chem. Phys. 119 585

    [37]

    Li W H, Yang T, Ma H R 2008 J. Chem. Phys. 128 044910

    [38]

    Wang F G, Landau D P 2001 Phys. Rev. Lett. 86 2050

    [39]

    Wang F G, Landau D P 2001 Phys. Rev. E 64 056101

    [40]

    Miao H, Li Y, Ma H R 2014 J. Chem. Phys. 140 154904

    [41]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [42]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [43]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [44]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [45]

    Tarazona P 2000 Phys. Rev. Lett. 84 694

    [46]

    Derjaguin B 1934 Kolloid-Zeitschrift 69 155

    [47]

    Glandt E D 1980 J. Colloid Interf. Sci. 77 512

    [48]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Physica A 222 10

    [49]

    Walz J Y, Sharma A 1994 J. Colloid Interf. Sci. 168 485

    [50]

    Biben T, Bladon P, Frenkel D 1996 J. Phys. Condensed Mat. 8 10799

    [51]

    Fisher I Z 1964 Statistical Theory of Liquids (Chicago: The University of Chicago Press)

    [52]

    Henderson J R 1986 Molec. Phys. 59 89

    [53]

    Holyst R 1989 Molec. Phys. 68 391

    [54]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [55]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Phys. Rev. Lett. 75 4548

    [56]

    Mao Y, Cates M E, Lekkerkerker H N W 1997 J. Chem. Phys. 106 3721

    [57]

    Mao Y, Bladon P, Lekkerkerker H N W, Cates M E 1997 Molec. Phys. 92 151

    [58]

    Piech M, Walz J Y 2000 J. Colloid Interf. Sci. 232 86

    [59]

    Oversteegen S M, Lekkerkerker H N W 2004 Physica A 341 23

    [60]

    Henderson J R 2002 Physica A 313 321

  • [1]

    Graham T 1861 Philosophical Transactions of the Royal Society of London 151 183

    [2]

    Brown R 1828 Philosophical Magazine Series 2 4 161

    [3]

    Einstein A 1905 Annalen der Physik 17 549

    [4]

    Matijevic E 1986 Langmuir 2 12

    [5]

    Matijevic E 1994 Langmuir 10 8

    [6]

    Snoeks E, van Blaaderen A, van Dillen T, van Kats C M, Brongersma M L, Polman A 2000 Adv. Mater. 12 1511

    [7]

    Hong L, Jiang S, Granick S 2006 Langmuir 22 9495

    [8]

    Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S 2010 Adv. Mater. 22 1060

    [9]

    Pusey P N (In Hansen J P, Levesque D, Zinn-Justin J editors) 1991 Liquids, Freezing and Glass Transition. II, chapter 10 (Amsterdam: North-Holland) p763

    [10]

    Dhont J K G 1996 An Introduction to Dynamics of Colloids. Studies in Interface Science (Amsterdam: Elsevier Science)

    [11]

    Nägele G 1996 Phys. Reports 272 215

    [12]

    Klein R 1997 The Physics of Complex Systems (In Mallamace F, Stanley H E, Ed.) (Amsterdam: IOS Press) pp301-345

    [13]

    Likos C N 2001 Phys. Reports 348 267

    [14]

    Hansen J, McDonald I R 2013 Theory of Simple Liquids: With Applications to Soft Matter (New York: Academic Press)

    [15]

    Lekkerkerker H N W, Tuinier R 2011 Colloids and the Depletion Interaction (Heidelberg: Springer)

    [16]

    Derjaguin B V, Landau L 1941 Acta Physicochim. URSS 14 633

    [17]

    Verwey E F, Overbeek J T G 1948 Theory of the Stability of Lyophobic Colloids (Amsterdam: Elsevier)

    [18]

    London F 1930 Z. Phys. Chem. 11 222

    [19]

    Eisenschitz R, London F 1930 Zeitschrift fr Physik 60 491

    [20]

    Israelachvili J N 2011 Intermolecular and Surface Forces (3rd Ed.) (New York: Academic Press)

    [21]

    Asakura S, Oosawa F 1954 J. Chem. Phys. 22 1255

    [22]

    Vrij A 1976 Pure Appl. Chem. 48 471

    [23]

    Dinsmore A D, Warren P B, Poon W C K, Yodh A G 1997 EPL 40 337

    [24]

    Bartlett P, Ottewill R H, Pusey P N 1992 Phys. Rev. Lett. 68 3801

    [25]

    Eldridge M D, Madden P A, Frenkel D 1993 Molec. Phys. 79 105

    [26]

    Dinsmore A D, Yodh A G, Pine D J 1996 Nature 383 239

    [27]

    Onsager L 1933 Chem. Rev. 13 73

    [28]

    Onsager L 1949 Ann. NY Acad. Sci. 51 627

    [29]

    Attard P 1989 J. Chem. Phys. 91 3083

    [30]

    Götzelmann B, Evans R, Dietrich S 1998 Phys. Rev. E 57 6785

    [31]

    Bennett C H 1976 J. Comp. Phys. 22 245

    [32]

    Allen M P, Tildesley D J 1994 Computer Simulation of Liquids (Oxford: Clarendon Press)

    [33]

    Li W H, Xue S, Ma H R 2001 J. Shanghai Jiao Tong Univ. E-6 126

    [34]

    Li W H, Ma H R 2002 Phys. Rev. E 66 061407

    [35]

    Li W H, Ma H R 2003 Eur. Phys. J. E 12 321

    [36]

    Li W H, Ma H R 2003 J. Chem. Phys. 119 585

    [37]

    Li W H, Yang T, Ma H R 2008 J. Chem. Phys. 128 044910

    [38]

    Wang F G, Landau D P 2001 Phys. Rev. Lett. 86 2050

    [39]

    Wang F G, Landau D P 2001 Phys. Rev. E 64 056101

    [40]

    Miao H, Li Y, Ma H R 2014 J. Chem. Phys. 140 154904

    [41]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [42]

    Mermin N D 1965 Phys. Rev. 137 A1441

    [43]

    Rosenfeld Y 1989 Phys. Rev. Lett. 63 980

    [44]

    Kierlik E, Rosinberg M L 1990 Phys. Rev. A 42 3382

    [45]

    Tarazona P 2000 Phys. Rev. Lett. 84 694

    [46]

    Derjaguin B 1934 Kolloid-Zeitschrift 69 155

    [47]

    Glandt E D 1980 J. Colloid Interf. Sci. 77 512

    [48]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Physica A 222 10

    [49]

    Walz J Y, Sharma A 1994 J. Colloid Interf. Sci. 168 485

    [50]

    Biben T, Bladon P, Frenkel D 1996 J. Phys. Condensed Mat. 8 10799

    [51]

    Fisher I Z 1964 Statistical Theory of Liquids (Chicago: The University of Chicago Press)

    [52]

    Henderson J R 1986 Molec. Phys. 59 89

    [53]

    Holyst R 1989 Molec. Phys. 68 391

    [54]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [55]

    Mao Y, Cates M E, Lekkerkerker H N W 1995 Phys. Rev. Lett. 75 4548

    [56]

    Mao Y, Cates M E, Lekkerkerker H N W 1997 J. Chem. Phys. 106 3721

    [57]

    Mao Y, Bladon P, Lekkerkerker H N W, Cates M E 1997 Molec. Phys. 92 151

    [58]

    Piech M, Walz J Y 2000 J. Colloid Interf. Sci. 232 86

    [59]

    Oversteegen S M, Lekkerkerker H N W 2004 Physica A 341 23

    [60]

    Henderson J R 2002 Physica A 313 321

  • [1] 梁建, 王华光, 张泽新. 粗糙和光滑椭球胶体的受限扩散.  , 2024, 73(14): 148202. doi: 10.7498/aps.73.20240559
    [2] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性.  , 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [3] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究.  , 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [4] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶.  , 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [5] 陈科. 胶体在非晶研究中的应用.  , 2017, 66(17): 178201. doi: 10.7498/aps.66.178201
    [6] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响.  , 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [7] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用.  , 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [8] 吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人. 受限胶体液滴蒸发过程中胶体颗粒沉积过程观察.  , 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [9] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用.  , 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [10] 李小龙, 陆颖, 翟永亮, 吴兰生, 孙威, 胡书新. 平板电极间胶体晶体在电场作用下的各向同性压缩.  , 2013, 62(17): 176105. doi: 10.7498/aps.62.176105
    [11] 陈根余, 吴汉华, 李乐, 常鸿, 唐元广. 电学参数对胶体中工业纯钛微弧氧化膜特性的影响.  , 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [12] 黄立新, 高海峡, 肖长明. 胶体中排空作用的耦合效应.  , 2009, 58(8): 5864-5870. doi: 10.7498/aps.58.5864
    [13] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用.  , 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [14] 李春树, 肖长明. 带电胶体系统中的排空作用.  , 2007, 56(4): 2434-2441. doi: 10.7498/aps.56.2434
    [15] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究.  , 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [16] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用.  , 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [17] 颜家壬, 梅玉平. 光纤孤子间的相互作用.  , 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [18] 戴长建. 自电离序列间的相互作用.  , 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [19] 钱祖文. 球形粒子之间的声相互作用.  , 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
    [20] 丁大钊, 王祝翔, 王淦昌. 奇异粒子的强相互作用.  , 1962, 18(7): 334-378. doi: 10.7498/aps.18.334
计量
  • 文章访问数:  10473
  • PDF下载量:  660
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-08-12
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map