搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同核轴取向的O2的高次谐波

袁仲 郭迎春 王兵兵

引用本文:
Citation:

不同核轴取向的O2的高次谐波

袁仲, 郭迎春, 王兵兵

High-order harmonic generation of O2 molecules with different nuclear axis orientations

Yuan Zhong, Guo Ying-Chun, Wang Bing-Bing
PDF
导出引用
  • 分子的高次谐波是强场超快物理的重要研究课题. 采用建立在形式散射理论基础上的频域方法计算了O2在线偏振激光场下的高次谐波, 探讨了核轴被准直在与激光传输方向垂直的平面内时, 高次谐波随核轴与光电场偏振方向所成夹角0的依赖关系. 结果表明: 各次谐波都是在0约为45时强度最大, 并有较宽的峰值宽度; 当偏离此角度, 高次谐波的强度变小; 到达平行或垂直取向时, 降到最低. 分析表明, 这是由于高次谐波的强度取决于分子基态的电子在动量空间中的电场方向的布居. 针对核轴被准直在激光传输方向与电场偏振方向所确定的平面内的情况, 计算了高次谐波随0的依赖关系, 结果与前一种情况基本相同. 分析发现, 当核轴被准直固定后, 分子绕核轴旋转的角度没有固定, 所以最后的高次谐波强度需要对不同的 时的高次谐波的贡献求和平均. 平均后相当于波函数相对于核轴旋转对称, 从而导致O2的高次谐波仅与0有关, 而与核轴被准直在哪个面上无关.
    High-order harmonic generation (HHG) is one of the hottest topics in strong field atomic and molecular physics. In this paper, frequency domain theory which is based on formal scattering theory is extended to study the HHG of O2 molecules under a linearly polarized single mode laser field. The dependence of HHG on the angle 0 between the laser polarization direction and nuclear axis is investigated. In our calculation, we only consider the contribution of highest occupied molecular orbital (HOMO) and use the single electron approximation. The HOMO is obtained from quantum chemical software Molpro. The intensity of the laser is 5.181014 W/cm2 and the wavelength is 800 nm. On the one hand, in the case that the nuclear axis lies in the plane perpendicular to the laser propagation direction, we find that the yields of all order harmonics increase with 0 increasing until the yields reach the maximum values when 0 is equal to about 45. Then the yields decrease with 0 increasing and have the minimum values when 0 is equal to about 90. The analysis shows that the yield of HHG is dominated by the density of electrons in HOMO along the laser polarizing direction in momentum space. On the other hand, in the case that the nuclear axis lies in the plane parallel to laser propagation direction, the dependence of HHG on 0 is the same as that when the nuclear axis is in the plane perpendicular to laser propagation direction. The reasons for the same results for the two cases lie in the following fact. The HOMO of O2 molecule has g symmetry which is not rotationally symmetric around nuclear axis. So HHG yield relies on the g extension orientation. Since the g extension orientation cannot be fixed, the HHG of O2 should be averaged over the contributions to HHG at all possible g extension orientations. This average is equivalent to that the electron density is rotationally symmetric around the nuclear axis and hence leads to the fact that the HHG yield of O2 depends on 0 rather than the plane that the nuclear axis lies in.
      通信作者: 郭迎春, ycguo@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275128)资助的课题.
      Corresponding author: Guo Ying-Chun, ycguo@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275128).
    [1]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901

    [2]

    Phpmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S I, Gaeta A, Hernadez-Garcia C, Plaja L, Becker A J, Becker A J, Muranne M M, KapteynH C 2012 Science 336 1287

    [3]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [4]

    Yu C, He H X, Wang Y H 2014 J. Phys. B 47 055601

    [5]

    Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805

    [6]

    Mohebbi M 2015 Phys. Rev. A 91 023835

    [7]

    Haessler S, Caillat J, Salieres P 2011 J. Phys. B 44 203001

    [8]

    Lein M 2007 J. Phys. B 40 R135

    [9]

    Bian X B, Bandrauk A D 2014 Phys. Rev. Letts. 113 193901

    [10]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [11]

    Itatani J, Zeidler D, Levesque J, Spanner M, Vileneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [12]

    Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 72 033412

    [13]

    Madsen C B, Madsen L B 2006 Phys. Rev. A 74 023403

    [14]

    Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 65 033201]

    [16]

    Kamta G L, Bandrauk A D 2005 Phys. Rev. A 71 053407

    [17]

    Telnov D A, Chu S I 2007 Phys. Rev. A 76 043412

    [18]

    Lewenstein M, Balcou P, Ivanov M Y, Huillier A L, Corkum P B 1994 Phys. Rev. A 49 2118

    [19]

    Gao L H, Li X F, Fu P M 2000 Phys. Rev. A 61 063407

    [20]

    Kopold R, Becker W, Kleber M 1998 Phys. Rev. A 58 4022

    [21]

    Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009 Phys. Rev. A 80 013401

  • [1]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901

    [2]

    Phpmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S I, Gaeta A, Hernadez-Garcia C, Plaja L, Becker A J, Becker A J, Muranne M M, KapteynH C 2012 Science 336 1287

    [3]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [4]

    Yu C, He H X, Wang Y H 2014 J. Phys. B 47 055601

    [5]

    Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805

    [6]

    Mohebbi M 2015 Phys. Rev. A 91 023835

    [7]

    Haessler S, Caillat J, Salieres P 2011 J. Phys. B 44 203001

    [8]

    Lein M 2007 J. Phys. B 40 R135

    [9]

    Bian X B, Bandrauk A D 2014 Phys. Rev. Letts. 113 193901

    [10]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [11]

    Itatani J, Zeidler D, Levesque J, Spanner M, Vileneuve D M, Corkum P B 2005 Phys. Rev. Lett. 94 123902

    [12]

    Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 72 033412

    [13]

    Madsen C B, Madsen L B 2006 Phys. Rev. A 74 023403

    [14]

    Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591

    [15]

    Liu Y, Jia C, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 033201 (in Chinese) [刘艳, 贾成, 郭福明, 杨玉军 2016 65 033201]

    [16]

    Kamta G L, Bandrauk A D 2005 Phys. Rev. A 71 053407

    [17]

    Telnov D A, Chu S I 2007 Phys. Rev. A 76 043412

    [18]

    Lewenstein M, Balcou P, Ivanov M Y, Huillier A L, Corkum P B 1994 Phys. Rev. A 49 2118

    [19]

    Gao L H, Li X F, Fu P M 2000 Phys. Rev. A 61 063407

    [20]

    Kopold R, Becker W, Kleber M 1998 Phys. Rev. A 58 4022

    [21]

    Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009 Phys. Rev. A 80 013401

  • [1] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性.  , 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 袁长全, 郭迎春, 王兵兵. 准直的O2分子高次谐波谱中的干涉效应.  , 2021, 70(20): 204206. doi: 10.7498/aps.70.20210433
    [4] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究.  , 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [5] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [6] 祝晓松, 张庆斌, 兰鹏飞, 陆培祥. 分子轨道高时空分辨成像.  , 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [7] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律.  , 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [8] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系.  , 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [9] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟.  , 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [10] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究.  , 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [11] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响.  , 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [12] 葛愉成. 高次谐波辐射发射特性研究.  , 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [13] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析.  , 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [14] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟.  , 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [15] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟.  , 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [16] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论.  , 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
    [17] 王友年, 李宏伟. 尾流效应对快速双原子分子离子在固体中电荷态及分子轴取向的影响.  , 2002, 51(4): 857-862. doi: 10.7498/aps.51.857
    [18] 杨中海, 彭良福, 刘盛纲. 改型wiggler高次谐波自由电子激光的非线性理论分析.  , 1995, 44(7): 1064-1072. doi: 10.7498/aps.44.1064
    [19] 李列明, 孙鑫, 冯伟国. 金属-真空表面的二次谐波理论.  , 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [20] 余玮, 徐至展. CO2激光打靶中的高次谐波发射.  , 1987, 36(2): 224-229. doi: 10.7498/aps.36.224
计量
  • 文章访问数:  6006
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-06
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map