搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

10-25 keV电子致厚W,Au靶韧致辐射谱的测量

谭文静 安竹 朱敬军 赵建玲 刘慢天

引用本文:
Citation:

10-25 keV电子致厚W,Au靶韧致辐射谱的测量

谭文静, 安竹, 朱敬军, 赵建玲, 刘慢天

Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets

Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian
PDF
导出引用
  • 测量了10-25 keV电子碰撞厚W, Au靶产生的韧致辐射谱, 并与Monte Carlo程序PENELOPE模拟的X射线谱进行了比较, 除在3 keV前实验谱略低于理论谱外, 整体上两者符合得很好. 在模拟电子与靶材料相互作用产生韧致辐射时, PENELOPE程序中只包含有普通韧制辐射的截面数据. 我们的实验结果表明, 在电子与固体靶相互作用时, 没有明显的极化韧致辐射产生, PENELOPE程序能够可靠地描述电子与固体厚靶相互作用产生的韧致辐射.
    Bremsstrahlung emission produced by electron impact on thick or thin targets is one of the fundamental radiation processes, and the interest in its study continues to grow because of its importance for understanding the interaction of electrons with matter and also for many practical applications. Nowadays, there has been some disagreement concerning whether or not the polarization bremsstrahlung, which is emitted by the atomic electrons in a target polarized by the incident charged particles, contributes to the total bremsstrahlung when the incident electrons bombard a solid target. Some reports suggested that the polarization bremsstrahlung does not significantly contribute to the total bremsstralung in experiments involving solid targets. However, some recent experimental data indicated that a significant amount of polarization bremsstrahlung contributes to the total bremsstrahlung when electrons from -decays of radioactive nuclei bombard solid targets. In other papers, the comparison between the bremsstrahlung spectra produced by electron impact on different thick solid targets from low-Z to high-Z elements and the simulation spectra of Monte Carlo code PENELOPE showed that there are certain discrepancies between the experimental and simulation results, and on the whole the factors required for the experimental results and simulation spectra to match with each other seem to increase slightly with the target atomic number increasing and for high-Z elements experimental results are about 10% higher than simulation results. PENELOPE is a general-purpose Monte Carlo code that simulates coupled electron-photon transportation, in which simulation for bremsstrahlung is only based on ordinary bremsstrahlung and any contribution from polarization bremsstrahlung is not included Therefore, whether the discrepancies between the experimental and simulation spectra are caused by the polarization bremsstrahlung or by other reasons remains to be further studied. In this paper, we improve the Faraday cup to measure the incident electron charges more accurately Meanwhile, a highpurity Al film of 7.05 m thickness is placed in front of the ultra-thin window of the X-ray silicon drifted detector (SDD) to prevent the backscattered electrons that escape from the side hole of the Faraday cup entering into the SDD detector. The Al film thickness is measured by the method of Rutherford backscattering. In addition, we adopt a data processing method which is different from previous one, to take into account the interaction between backscattered electrons and the window of the SDD detector. New measurements of bremsstrahlung spectra generated by 10-25 keV electron impact, respectively, on thick targets of tungsten and gold are reported in this paper. The experimental data are compared with the simulation results of X-ray spectra obtained from the PENELOPE code, and they are in very good agreement except for the lower energy region ( 3 keV) where the experimental spectra are slightly lower than the simulation spectra. The reason for the small discrepancy for the lower energy region ( 3 keV) is also discussed. The results presented in this paper indicate that the X-ray spectra, which are produced by electron impact on solid targets, do not include obvious contribution of polarization bremsstrahlung, and the PENELOPE code can reliably describe the bremsstrahlung produced by electron impact on solid thick targets.
      Corresponding author: An Zhu, anzhu@scu.edu.cn;zhujingjun@scu.edu.cn ; Zhu Jing-Jun, anzhu@scu.edu.cn;zhujingjun@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175123).
    [1]

    Acosta E, Llovet X, Salvat F 2002 Appl. Phys. Lett. 80 3228

    [2]

    Matsuyama M, Watanabe K, Hasegawa K {1998 Fusion Eng. Design 39 929

    [3]

    An Z, Hou Q, Long J J 2008 Nucl. Instr. Meth. B 266 3643

    [4]

    Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100

    [5]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M 1977 At. Data Nucl. Data Tables 20 175

    [6]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M {1981 Erratum 26 477

    [7]

    Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381

    [8]

    Seltzer S M, Berger M J 1985 Nucl. Instr. Meth. B 12 95

    [9]

    Seltzer S M, Berger M J 1986 At. Data Nucl. Data Tables 35 345

    [10]

    Shanker R 2006 Radiat. Phys. Chem. 75 1176

    [11]

    Portillo S, Quarles C A 2003 Phys. Rev. Lett. 91 173201

    [12]

    Quarles C A, Portillo S 2006 Radiat. Phys. Chem. 75 1187

    [13]

    Williams S, Quarles C A 2008 Phys. Rev. A 78 062704

    [14]

    Amrit Singh, Dhaliwal A S 2016 Radiat. Phys. Chem. 119 167

    [15]

    Salvat F, Fernndez-Varea J M, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [16]

    Salvat F, Fernndez-Varea J M, Sempau J, Llovet X 2006 Radiat. Phys. Chem. 75 1201

    [17]

    Llovet X, Sorbier L, Campos C S, Acosta E, Salvat F 2003 J. Appl. Phys. 93 3844

    [18]

    Acosta E, Llovet X, Coleoni E, Riveros J A, Salvat F 1998 J. Appl. Phys. 83 6038

    [19]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. B 267 3495

    [20]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [21]

    An Z, Liu M T, Wu Y, Duan Y M 2006 Atomic Energy Science and Technology 40 84 (in Chinese) [安竹, 刘慢天, 吴英, 段艳敏 2006 原子能科学技术 40 84]

    [22]

    Gallagher W J, Cipolla S J 1974 Nucl. Instr. Meth. 122 405

  • [1]

    Acosta E, Llovet X, Salvat F 2002 Appl. Phys. Lett. 80 3228

    [2]

    Matsuyama M, Watanabe K, Hasegawa K {1998 Fusion Eng. Design 39 929

    [3]

    An Z, Hou Q, Long J J 2008 Nucl. Instr. Meth. B 266 3643

    [4]

    Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100

    [5]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M 1977 At. Data Nucl. Data Tables 20 175

    [6]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M {1981 Erratum 26 477

    [7]

    Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381

    [8]

    Seltzer S M, Berger M J 1985 Nucl. Instr. Meth. B 12 95

    [9]

    Seltzer S M, Berger M J 1986 At. Data Nucl. Data Tables 35 345

    [10]

    Shanker R 2006 Radiat. Phys. Chem. 75 1176

    [11]

    Portillo S, Quarles C A 2003 Phys. Rev. Lett. 91 173201

    [12]

    Quarles C A, Portillo S 2006 Radiat. Phys. Chem. 75 1187

    [13]

    Williams S, Quarles C A 2008 Phys. Rev. A 78 062704

    [14]

    Amrit Singh, Dhaliwal A S 2016 Radiat. Phys. Chem. 119 167

    [15]

    Salvat F, Fernndez-Varea J M, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [16]

    Salvat F, Fernndez-Varea J M, Sempau J, Llovet X 2006 Radiat. Phys. Chem. 75 1201

    [17]

    Llovet X, Sorbier L, Campos C S, Acosta E, Salvat F 2003 J. Appl. Phys. 93 3844

    [18]

    Acosta E, Llovet X, Coleoni E, Riveros J A, Salvat F 1998 J. Appl. Phys. 83 6038

    [19]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. B 267 3495

    [20]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [21]

    An Z, Liu M T, Wu Y, Duan Y M 2006 Atomic Energy Science and Technology 40 84 (in Chinese) [安竹, 刘慢天, 吴英, 段艳敏 2006 原子能科学技术 40 84]

    [22]

    Gallagher W J, Cipolla S J 1974 Nucl. Instr. Meth. 122 405

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响.  , 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟. W6+离子的电子碰撞电离研究.  , 2024, 73(12): 123401. doi: 10.7498/aps.73.20240408
    [3] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟.  , 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [4] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟.  , 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [5] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响.  , 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [6] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究.  , 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [7] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究.  , 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟.  , 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [9] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究.  , 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [10] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟.  , 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [11] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟.  , 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [12] 魏熙晔, 李泉凤, 严慧勇. 高能电子束韧致辐射特性的理论研究.  , 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [13] 张连珠, 高书侠. H2对N2直流辉光放电电子行为的影响.  , 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [14] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算.  , 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [15] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟.  , 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟.  , 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子.  , 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [18] 张连珠. N+2离子在氮直流辉光放电中碰撞离解的作用.  , 2003, 52(4): 920-924. doi: 10.7498/aps.52.920
    [19] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布.  , 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟.  , 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  6673
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-25
  • 修回日期:  2016-03-19
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map