搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高阶非完整约束系统嵌入变分恒等式的积分变分原理

宋端 刘畅 郭永新

引用本文:
Citation:

高阶非完整约束系统嵌入变分恒等式的积分变分原理

宋端, 刘畅, 郭永新

The integral variational principles for embedded variation identity of high-order nonholonomic constrained systems

Song Duan, Liu Chang, Guo Yong-Xin
PDF
导出引用
  • 本文从高阶非完整系统嵌入变分恒等式的积分变分原理出发, 根据三种不等价条件变分的选取, 得到了高阶非完整系统的三类不等价动力学模型, 即高阶非完整约束系统的vakonomic方程、Lagrange-d'Alembert 方程和一种新的动力学方程. 当高阶非完整约束方程退化为一阶非完整约束时, 利用此理论可以得到一般非完整系统的vakonomic模型、Chetaev模型和一种新的动力学模型. 最后借助于应用实例验证了结论的正确性.
    In this article, from the integral variational principles for embedded variation identity of high-order nonholonomic constrained systems, three kinds of dynamics for high-order nonholonomic constrained systems are obtained, including the vakonomic dynamical model, Lagrange-d'Alembert model and a new one if utilizing respectively three kinds of conditional variation to them. And the integral variational principles for embedded variation identity of high-order nonholonomic constrained systems is also fitted for the general nonholonomic systems when the constrained equation is reduced to a first-order one. Then, the vakonomic dynamic, Chetaev dynamics and a new model of general nonholonomic systems can also be obtained. Finally, two illustrated examples are used to verify the validity of the theory.
    • 基金项目: 国家自然科学基金(批准号:11202090,11172120,10932002)和辽宁省重点实验室建设项目(批准号:2008403009)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11202090, 11172120, 10932002) and the Program of Constructing Liaoning Provincial Key Laboratory, China (Grant No. 2008403009).
    [1]

    Guo Y X, Luo S K, Mei F X 2004 Advance in Mechanics 34 3 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 3]

    [2]

    Neimark Ju I, Fufaev N A 1972 Dynamics of Nonholonomic Systems Providence: American Mathematical Society

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute Technology Press) (in Chinese) [梅凤翔, 刘瑞, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社)]

    [4]

    Shen H C 2005 Acta Phys. Sin. 54 6 (in Chinese) [沈惠川 2005 54 6]

    [5]

    Guo Y X, Zhao Z, Liu S X, Liu C 2008 Acta Phys. Sin. 57 3 (in Chinese) [郭永新, 赵喆, 刘世兴, 刘畅 2008 57 3]

    [6]

    Zhao Z, Guo Y X, Liu C, Liu S X 2008 Acta Phys. Sin. 57 4 (in Chinese) [赵喆, 郭永新, 刘畅, 刘世兴 2008 57 4]

    [7]

    Guo Z H, Gao P Y 1990 Chinese Journal of Theoretical and Applied Mechanics 22 2 (in Chinese) [郭仲衡, 高普云 1990 力学学报 22 2]

    [8]

    Chen B 1991 Chinese Journal of Theoretical and Applied Mechanics 23 3 (in Chinese) [陈滨 1991 力学学报 23 3]

    [9]

    Guo Z H, Gao P Y 1992 Chinese Journal of Theoretical and Applied Mechanics 24 2 (in Chinese) [郭仲衡, 高普云 1992 力学学报 24 2]

    [10]

    Guo Y X, Zhao Z, Liu S X, Zhu N, Han X J 2006 Acta Phys. Sin. 55 8 (in Chinese) [郭永新, 赵喆, 刘世兴, 朱娜, 韩晓静 2006 55 8]

    [11]

    Guo Y X, Liu S X, Liu C, Chang P 2009 Phys. Lett. A 373

    [12]

    Zheng X Y, Wu Y Q 2009 Int. J. Auto. Comp. 6 3

    [13]

    Gao F Z, Yuan F S, Gao C C 2009 Fuzzy Systems and Mathematics 23 3 (in Chinese) [高芳征, 袁付顺, 高存臣 2009 模糊系统与数学 23 3]

    [14]

    Zhang X W 2006 Journal of Longdong College 16 1 (in Chinese) [张相武 2006 陇东学院学报 16 1]

    [15]

    Mu X W, Yu J M, Cheng G F 2006 Applied Mathematics and Mechanics 27 4 (in Chinese) [慕小武, 虞继敏, 程桂芳 2006 应用数学和力学 27 4]

    [16]

    Gao F Z, Shang Y L, Yuan F S 2012 Journal of System Sciences and Mathematical Sciences 32 2 (in Chinese) [高芳征, 尚艳玲, 袁付顺 2012 系统科学与数学 32 2]

    [17]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian Systems (Beijing: Beijing Institute Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版)]

    [18]

    Mei F X 1991 Applied Mathematics and Mechanics 12 8 (in Chinese) [梅凤翔 1991 应用数学和力学 12 8]

    [19]

    Chen L Q 1992 Journal of Anshan Institute I. & S. Technology 15 1 (in Chinese) [陈立群 1992 鞍山钢铁学院学报 15 1]

    [20]

    Li Y, Fang J H, Zhang K J 2010 Journal of Dynamics and Control 8 4 (in Chinese) [李燕, 方建会, 张克军 2010 动力学与控制学报 8 4]

  • [1]

    Guo Y X, Luo S K, Mei F X 2004 Advance in Mechanics 34 3 (in Chinese) [郭永新, 罗绍凯, 梅凤翔 2004 力学进展 34 3]

    [2]

    Neimark Ju I, Fufaev N A 1972 Dynamics of Nonholonomic Systems Providence: American Mathematical Society

    [3]

    Mei F X, Liu D, Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute Technology Press) (in Chinese) [梅凤翔, 刘瑞, 罗勇 1991 高等分析力学 (北京: 北京理工大学出版社)]

    [4]

    Shen H C 2005 Acta Phys. Sin. 54 6 (in Chinese) [沈惠川 2005 54 6]

    [5]

    Guo Y X, Zhao Z, Liu S X, Liu C 2008 Acta Phys. Sin. 57 3 (in Chinese) [郭永新, 赵喆, 刘世兴, 刘畅 2008 57 3]

    [6]

    Zhao Z, Guo Y X, Liu C, Liu S X 2008 Acta Phys. Sin. 57 4 (in Chinese) [赵喆, 郭永新, 刘畅, 刘世兴 2008 57 4]

    [7]

    Guo Z H, Gao P Y 1990 Chinese Journal of Theoretical and Applied Mechanics 22 2 (in Chinese) [郭仲衡, 高普云 1990 力学学报 22 2]

    [8]

    Chen B 1991 Chinese Journal of Theoretical and Applied Mechanics 23 3 (in Chinese) [陈滨 1991 力学学报 23 3]

    [9]

    Guo Z H, Gao P Y 1992 Chinese Journal of Theoretical and Applied Mechanics 24 2 (in Chinese) [郭仲衡, 高普云 1992 力学学报 24 2]

    [10]

    Guo Y X, Zhao Z, Liu S X, Zhu N, Han X J 2006 Acta Phys. Sin. 55 8 (in Chinese) [郭永新, 赵喆, 刘世兴, 朱娜, 韩晓静 2006 55 8]

    [11]

    Guo Y X, Liu S X, Liu C, Chang P 2009 Phys. Lett. A 373

    [12]

    Zheng X Y, Wu Y Q 2009 Int. J. Auto. Comp. 6 3

    [13]

    Gao F Z, Yuan F S, Gao C C 2009 Fuzzy Systems and Mathematics 23 3 (in Chinese) [高芳征, 袁付顺, 高存臣 2009 模糊系统与数学 23 3]

    [14]

    Zhang X W 2006 Journal of Longdong College 16 1 (in Chinese) [张相武 2006 陇东学院学报 16 1]

    [15]

    Mu X W, Yu J M, Cheng G F 2006 Applied Mathematics and Mechanics 27 4 (in Chinese) [慕小武, 虞继敏, 程桂芳 2006 应用数学和力学 27 4]

    [16]

    Gao F Z, Shang Y L, Yuan F S 2012 Journal of System Sciences and Mathematical Sciences 32 2 (in Chinese) [高芳征, 尚艳玲, 袁付顺 2012 系统科学与数学 32 2]

    [17]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoffian Systems (Beijing: Beijing Institute Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版)]

    [18]

    Mei F X 1991 Applied Mathematics and Mechanics 12 8 (in Chinese) [梅凤翔 1991 应用数学和力学 12 8]

    [19]

    Chen L Q 1992 Journal of Anshan Institute I. & S. Technology 15 1 (in Chinese) [陈立群 1992 鞍山钢铁学院学报 15 1]

    [20]

    Li Y, Fang J H, Zhang K J 2010 Journal of Dynamics and Control 8 4 (in Chinese) [李燕, 方建会, 张克军 2010 动力学与控制学报 8 4]

  • [1] 邹丹旦, 杨维紘. 双流体等离子体模型的动力学可容变分.  , 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [2] 石兰芳, 莫嘉琪. 用广义变分迭代理论求一类相对转动动力学方程的解.  , 2013, 62(4): 040203. doi: 10.7498/aps.62.040203
    [3] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状.  , 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [4] 曹小群, 宋君强, 张卫民, 赵军, 朱小谦. 海-气耦合动力系统的改进变分迭代解法.  , 2012, 61(3): 030203. doi: 10.7498/aps.61.030203
    [5] 钟剑, 费建芳, 黄思训, 杜华栋. 模式误差弱约束四维变分同化研究.  , 2012, 61(14): 149203. doi: 10.7498/aps.61.149203
    [6] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量.  , 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [7] 吴兆春. 导热几何形状反演的变分原理及边界条件的确立.  , 2010, 59(9): 6326-6330. doi: 10.7498/aps.59.6326
    [8] 赵云辉, 海文华, 朱钱泉. 重夸克偶素的高阶变分-积分微扰修正.  , 2009, 58(2): 734-739. doi: 10.7498/aps.58.734
    [9] 赵 喆, 郭永新, 刘 畅, 刘世兴. 三类非完整变分下的约束运动微分方程.  , 2008, 57(4): 1998-2005. doi: 10.7498/aps.57.1998
    [10] 张 毅. 事件空间中力学系统的微分变分原理.  , 2007, 56(2): 655-660. doi: 10.7498/aps.56.655
    [11] 郭永新, 赵 喆, 刘世兴, 王 勇, 朱 娜, 韩晓静. 非完整系统Chetaev动力学和vakonomic动力学的等价条件.  , 2006, 55(8): 3838-3844. doi: 10.7498/aps.55.3838
    [12] 黄永畅, 李希国. 不同积分变分原理的统一.  , 2005, 54(8): 3473-3479. doi: 10.7498/aps.54.3473
    [13] 李爱民, 张 莹, 李子平. 非完整约束奇异广义力学系统的Poincaré-Cartan积分.  , 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [14] 隆正文, 李子平. 高阶微商系统中正则Ward恒等式和Abel规范理论中动力学质量的产生.  , 2004, 53(7): 2100-2105. doi: 10.7498/aps.53.2100
    [15] 陈 洪, 阎玉立, 梅 花. 磁性薄膜热动力学性质的变分累积展开研究.  , 2003, 52(10): 2607-2611. doi: 10.7498/aps.52.2607
    [16] 方建会. 转动变质量系统的相对论性动力学方程和变分原理.  , 2000, 49(6): 1028-1030. doi: 10.7498/aps.49.1028
    [17] 汪克林, 陈庆虎, 完绍龙. 极化子新的变分计算.  , 1994, 43(3): 433-437. doi: 10.7498/aps.43.433
    [18] 李子平. 广义Noether恒等式及其应用.  , 1986, 35(4): 553-555. doi: 10.7498/aps.35.553
    [19] 赵保恒, 范洪义. 规范条件和Slavnov-Taylor恒等式的破坏.  , 1977, 26(6): 531-534. doi: 10.7498/aps.26.531
    [20] 王福恒. 确定散射相移的变分方法.  , 1974, 23(6): 73-78. doi: 10.7498/aps.23.73
计量
  • 文章访问数:  5792
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-30
  • 修回日期:  2012-12-30
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map