-
通过坩埚下降法生长了系列共掺Nd,Gd:CaF2和Nd,Y:CaF2晶体, 研究了Gd3+/Y3+共掺对Nd3+光谱性能以及Nd:CaF2晶体晶胞参数的影响规律. 对于0.5 at.%Nd, x at.%Gd(x=2,5,8,10):CaF2系列晶体, 当调控Gd3+掺杂浓度为2 at.%时, 具有最大的荧光寿命499 s; 当Gd3+掺杂浓度为5 at.%时, 具有最大的吸收截面1.4710-20 cm2, 最大的发射截面1.910-20 cm2; 当Gd3+掺杂浓度为8 at.%时, 具有最佳的发射带宽29.03 nm. 对于0.6 at.%Nd, xat.%Y(x=2, 5, 8, 10):CaF2系列晶体, Y3+掺杂浓度为5 at.%时, 有最大的吸收截面2.4110-20 cm2, 最大的发射截面3.1710-20 cm2; 当Y3+掺杂浓度为10 at.%时, 具有最长的荧光寿命359.4 s,并且具有最大发射带宽26 nm.In the last few years, Nd3+ doped fluoride crystals have achieved some amazing laser performances by codoping buffer ions such as Y3+ and Gd3+ ions, which lead to the changing of local structure of Nd3+ ions. In this work, effects of doping concentration of Gd3+ and Y3+ ions on optical properties are discussed. The relationships between spectroscopic properties and the unit cells are also discussed. Nd, Y:CaF2 and Nd, Gd:CaF2 disordered crystals are grown by using temperature gradient technique (TGT). Among 0.5 at.%Nd, x at.%Gd(x=2, 5, 8, 10):CaF2 crystals, the crystal with Gd3+ of 2 at.% has the longest fluorescence lifetime (499 s). Increasing the concentration of Gd3+ up to 5 at.%, the crystal has a maximum absorption cross section of 1.910-20 cm2, and a maximum emission cross section of 1.910-20cm2. The crystal with Gd3+ of 8 at.%has a maximum emission bandwidth of 29.03 nm(FWHM). Among 0.6 at.%Nd, x at.%Y(x=2, 5, 8, 10):CaF2 crystal, the crystal with Y3+ of 5 at.%has the biggest absorption cross section (2.4110-20 cm2), and the biggest emission cross section (3.1710-20 cm2), when the concentration of Y3+ is 5 at.%. When the Y3+ concentration increases up to 10 at.%, the crystal has a longest fluorescence lifetime of 359.4 s and maximal emission bandwidth of 26 nm(FWHM).The different concentrations of codoping ions have different effects on the Nd:CaF2 crystals, for the formations of different optical centers. In order to study the effects of local structure around Nd3+ on the optical properties in a set of Nd:CaF2 single crystals with different codoping concentrations of Gd3+ and Y3+, the unit cell parameters are investigated by X-ray diffraction. With different concentrations of Gd3+ and Y3+ ions in Nd:CaF2 crystal, the local structure of Nd3+ changes, which leads to different optical properties. The relevant details will further be explained in this paper.
-
Keywords:
- Nd:CaF2 crystal /
- buffer ions /
- unit cell parameters /
- spectrum properties
[1] Sorokin P P, Stevenson M J 1960 Phys. Rev. Lett. 5 557
[2] Kaiser W, Garrett C G B, Wood D L 1961 Phys. Rev. 123 766
[3] Dannecker B, Délen X Wentsch K S, Weichelt B, Hönninger C, Voss A, Ahmed M A, Graf T 2014 Opt. Express 22 22278
[4] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P Mortiner M 2015 Opt. Lett. 2 288
[5] Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F. K 1991 J. Opt. Soc. Am. B 8 726
[6] Kaminskii A A, Osico V V, Prokhorov A M, Voronko Y K 1966 Phys. Lett. 22 419
[7] Kaminskii A A, Zhmurwa Z I, Lomonov V A, Sarkisov S E 1984 Phys. St at. Sol. 84 81
[8] Kaminskii A A, Verdún H R 1992 Sov. J. Quantum Electron. 22 95
[9] Bagdasarov K S, Voronko Y K, Kaminskii A A 1968 Kristallografiya. 10 746
[10] Kaminskii A A 1967 Phys. St at. Sol. 20 51
[11] Kaminskii A A, Agamalyan N R, Deniseneo G A, Sarkisov S E, Fedorov P P 1982 Phys. St at. Sol. 70 397
[12] Kaminskii A A 1967 JETP Lett. 6 115
[13] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma, F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737
[14] Li C, Zhang F, Liu J, Su L B, Jiang D P, Liu J, Liu J F, Xu J 2015 Opt.Mater.Express 5 1972
[15] Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Crystengcomm. 17 7398
[16] Ma F K, Zhang Q, Jiang D P, Su L B, Shao Y J, Tang F, Xu J, Solarz P, Ryba-Romanowski W, Lisiecki R, Macalik B 2014 Laser Phys. 24 105703
-
[1] Sorokin P P, Stevenson M J 1960 Phys. Rev. Lett. 5 557
[2] Kaiser W, Garrett C G B, Wood D L 1961 Phys. Rev. 123 766
[3] Dannecker B, Délen X Wentsch K S, Weichelt B, Hönninger C, Voss A, Ahmed M A, Graf T 2014 Opt. Express 22 22278
[4] Aballea P, Suganuma A, Druon F, Hostalrich J, Georges P, Gredin P Mortiner M 2015 Opt. Lett. 2 288
[5] Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F. K 1991 J. Opt. Soc. Am. B 8 726
[6] Kaminskii A A, Osico V V, Prokhorov A M, Voronko Y K 1966 Phys. Lett. 22 419
[7] Kaminskii A A, Zhmurwa Z I, Lomonov V A, Sarkisov S E 1984 Phys. St at. Sol. 84 81
[8] Kaminskii A A, Verdún H R 1992 Sov. J. Quantum Electron. 22 95
[9] Bagdasarov K S, Voronko Y K, Kaminskii A A 1968 Kristallografiya. 10 746
[10] Kaminskii A A 1967 Phys. St at. Sol. 20 51
[11] Kaminskii A A, Agamalyan N R, Deniseneo G A, Sarkisov S E, Fedorov P P 1982 Phys. St at. Sol. 70 397
[12] Kaminskii A A 1967 JETP Lett. 6 115
[13] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma, F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. 39 1737
[14] Li C, Zhang F, Liu J, Su L B, Jiang D P, Liu J, Liu J F, Xu J 2015 Opt.Mater.Express 5 1972
[15] Jiang D P, Zhan Y Y, Zhang Q, Ma F K, Su L B, Tang F, Qian X B, Xu J 2015 Crystengcomm. 17 7398
[16] Ma F K, Zhang Q, Jiang D P, Su L B, Shao Y J, Tang F, Xu J, Solarz P, Ryba-Romanowski W, Lisiecki R, Macalik B 2014 Laser Phys. 24 105703
计量
- 文章访问数: 6649
- PDF下载量: 235
- 被引次数: 0