-
为探索新型激光晶体, 采用固相法合成了(3 at.%) Nd3+:SrY2O4多晶, 对其结构和发光性质进行了研究. 对样品的X射线衍射谱进行Rietveld精修得到了样品的晶胞参数、原子位置等. 在353 nm激发下,Nd3+:SrY2O4在可见波段的最强荧光峰位于419~nm, 对应Nd3+的2D15/24I9/2跃迁. 在824~nm激发下, Nd3+的4F3/24I11/2跃迁的荧光谱带宽约为90~nm, 最强峰为1083 nm, 荧光寿命为281.7 s. 宽发射光谱和长的能级寿命表明, Nd3+:SrY2O4是一种很有希望的新波长激光二极管抽运超短脉冲激光材料.In order to obtain new-type laser crystals, SrY2O4 is chosen as a host material. Because Y3+ ions in SrY2O4 occupy two non-equivalent sites, it might be possible to realize dual-wave laser and broadband emission at 1.06 m by partially replacing Y3+ with Nd3+. In this work, (3 at.%) Nd3+ doped SrY2O4 phosphor is synthesized by the conventional solid state reaction. The structure and luminescence properties in the visible and near-infrared ranges are studied. The peaks in the X-ray powder diffraction pattern of (3 at.%) Nd3+:SrY2O4 can be well indexed according to ICSD#25701. The lattice parameters, atomic coordinates, atomic temperature factors etc., are obtained by the Rietveld refinement with R_p of 4.68% and R_wp of 5.91%. According to the excitation spectra in a range of 220-380 nm, it can be seen that Nd3+:SrY2O4 is efficiently excited by 353 nm which is assigned to the 4I9/24D3/2+4D5/2+2I11/2+4D1/2 transition of Nd3+ ions. Under the 353 nm light excitation, Nd3+:SrY2O4 exhibits the strongest emission at 419 nm corresponding to the 2D15/24I9/2 transition of Nd3+ ions. What is more, Nd3+:SrY2O4 can be excited effectively by 824 nm light, which matches well with the commercial 830 nm diode laser. When excited with 824 nm, the strongest fluorescence peak is located at 1083 nm with a wide bandwidth of about 90 nm. Compared with that at 8~K, the bandwidth in the fluorescence spectrum at 300 K is broadened because of the homogeneous broadening induced by the increase of temperature. Additionally, the peaks corresponding to the 4F3/24I11/2 transition are split into two groups at 8~K, which results from the two non-equivalent sites of Nd3+ ions. Compared with Nd3+:YAG, Nd3+:SrY2O4 has more potential applications in the tunable and ultrashort lasers. The fluorescence lifetime of the 4F3/24I11/2 transition of (3 at.%) Nd3+:SrY2O4 is 281.7 s, which shows slight concentration quenching compared with that of (0.5 at.%) Nd3+:SrY2O4. The fluorescence lifetime of (3 at.%) Nd3+:SrY2O4 is much longer than that of (0.6 at.%) Nd3+:YAG which is beneficial to the energy storage. In conclusion, the wide emission band and the long decay time of 1.08 m indicate that Nd3+:SrY2O4 is a very promising new-wavelength and ultrashort laser material pumped by laser diode.
-
Keywords:
- Nd3+ /
- SrY2O4 /
- X-ray powder diffraction /
- photoluminescence
[1] Qiao Y B, Da N, Chen D P, Qiu J R 2007 Acta Phys. Sin. 56 7023 (in Chinese) [乔延波, 达宁, 陈丹平, 邱建荣 2007 56 7023]
[2] Golla D, Knoke S, Sche W, Ernst G, Bode M, Tnermann A, Welling H 1995 Opt. Lett. 20 1148
[3] Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755
[4] Li C M, Zong N, Gao H W, Xu Z Y, Liu W B, Pan Y B, Feng X Q 2010 Chin. Phys. B 19 064202
[5] Fields R A, Birnbaum M, Fincher C L 1987 Appl. Phys. Lett. 51 1885
[6] Zheng Y H, Zhou H J, Wang Y J, Wu Z Q 2013 Chin. Phys. B 22 084207
[7] Liu J, Shao Z, Zhang H, Meng X, Zhu L, Jiang M 1999 Appl. Phys. B 69 241
[8] Decker B F, Kasper J S 1957 Acta Crystallogr. 10 332
[9] Xu W L, Jia W Y, Revira I, Monge K, Liu H M 2001 J. Electrochem. Soc. 148 H176
[10] Zhang Y, Geng D L, Shang M M, Zhang X, Li X J, Cheng Z Y, Lian H Z, Lin J 2013 Dalton T. 42 4799
[11] Fukuda K, Matsubara H 2005 J. Am. Ceram. Soc. 88 3205
[12] van Pieterson L, Reid M F, Wegh R T, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113
[13] Koechner W 2006 Solid-State Laser Engneering (New York: Springer) p54
-
[1] Qiao Y B, Da N, Chen D P, Qiu J R 2007 Acta Phys. Sin. 56 7023 (in Chinese) [乔延波, 达宁, 陈丹平, 邱建荣 2007 56 7023]
[2] Golla D, Knoke S, Sche W, Ernst G, Bode M, Tnermann A, Welling H 1995 Opt. Lett. 20 1148
[3] Peng K C, Pan Q, Wang H, Zhang Y, Su H, Xie C D 1998 Appl. Phys. B 66 755
[4] Li C M, Zong N, Gao H W, Xu Z Y, Liu W B, Pan Y B, Feng X Q 2010 Chin. Phys. B 19 064202
[5] Fields R A, Birnbaum M, Fincher C L 1987 Appl. Phys. Lett. 51 1885
[6] Zheng Y H, Zhou H J, Wang Y J, Wu Z Q 2013 Chin. Phys. B 22 084207
[7] Liu J, Shao Z, Zhang H, Meng X, Zhu L, Jiang M 1999 Appl. Phys. B 69 241
[8] Decker B F, Kasper J S 1957 Acta Crystallogr. 10 332
[9] Xu W L, Jia W Y, Revira I, Monge K, Liu H M 2001 J. Electrochem. Soc. 148 H176
[10] Zhang Y, Geng D L, Shang M M, Zhang X, Li X J, Cheng Z Y, Lian H Z, Lin J 2013 Dalton T. 42 4799
[11] Fukuda K, Matsubara H 2005 J. Am. Ceram. Soc. 88 3205
[12] van Pieterson L, Reid M F, Wegh R T, Soverna S, Meijerink A 2002 Phys. Rev. B 65 045113
[13] Koechner W 2006 Solid-State Laser Engneering (New York: Springer) p54
计量
- 文章访问数: 6340
- PDF下载量: 229
- 被引次数: 0