搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振子系统的量子-经典轨道、Berry相及Hannay角

辛俊丽 沈俊霞

引用本文:
Citation:

谐振子系统的量子-经典轨道、Berry相及Hannay角

辛俊丽, 沈俊霞

Correspondences between quantum and classical orbits Berry phases and Hannay angles for harmonic oscillator system

Xin Jun-Li, Shen Jun-Xia
PDF
导出引用
  • 从量子-经典轨道和几何相两方面, 研究了二维旋转平移谐振子系统的量子-经典对应. 通过广义规范变换得到了Lissajous经典周期轨道和Hannay角. 另外, 使用含时规范变换解析推导了旋转平移谐振子系统Schrödinger方程的本征波函数和Berry相, 得出结论: 原规范中的非绝热Berry相是经典Hannay角的-n倍. 最后, 使用SU(2)自旋相干态叠加, 构造一稳态波函数, 其波函数的概率云很好地局域于经典轨道上, 满足几何相位和经典轨道同时对应.
    On the basis of quantum-classical correspondence for two-dimensional anisotropic oscillator, we study quantum-classical correspondence for two-dimensional rotation and translation harmonic oscillator system from both quantum-classical orbits and geometric phases. Here, the two one-dimensional oscillators refer to a common harmonic oscillator and a rotation and translation harmonic oscillator. In terms of the generalized gauge transformation, we obtain the stationary Lissajous orbits and Hannay's angle. On the other hand, the eigenfunctions and Berry phases are derived analytically with the help of time-dependent gauge transformation. We may draw the conclusion that the nonadiabatic Berry phase in the original gauge is-n times the classical Hannay's angle, here n is the eigenfunction index. As a matter of fact, the quantum geometric phase and the classical Hannay's angle have the same nature according to Berry. Finally, by using the SU(2) coherent superposition of degenerate two-dimensional eigenfunctions for a fixed energy value, we construct the stationary wave functions and show that the spatial distribution of wave-function probability clouds is in excellent accordance with the classical orbits, indicating the exact quantum-classical correspondence. We also demonstrate the quantum-classical correspondences for the geometric phase-angle and the quantum-classical orbits in a unified form.
      通信作者: 辛俊丽, xinjunliycu@163.com
    • 基金项目: 国家自然科学基金(批准号: 11275118)和运城学院博士科研启动项目资助的课题.
      Corresponding author: Xin Jun-Li, xinjunliycu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275118) and the Doctoral Scientific Research Foundation of Yuncheng College, China.
    [1]

    Makowski A J 2006 Eur. J. Phys. 27 1133

    [2]

    Nielsen J R 1976 Collected Works (Vol. 3): The Correspondence Principle (1918-1923) (Amsterdam: North-Holland)

    [3]

    Bohr N 1922 The Structure of the Atom Nobel Lecture, December 11, 1922

    [4]

    Bohr N 1923 Nature 112 29

    [5]

    Heisenberg W (translated by Eckart C, Hoyt F C) 1949 The Physical Principles of the Quantum Theory (New York: Dover Publications) p116

    [6]

    Schrödinger E 1926 Naturwissenschaften 14 664

    [7]

    Chen Y F 2011 Phys. Rev. A 83 032124

    [8]

    Chen Y F, Lan Y P, Huang K F 2003 Phys. Rev. A 68 043803

    [9]

    Chen Y F, Lu T H, Su K W, Huang K F 2006 Phys. Rev. Lett. 96 213902

    [10]

    Lu T H, Lin Y C, Chen Y F, Huang K F 2008 Phys. Rev. Lett. 101 233901

    [11]

    Xin J L, Liang J Q 2012 Chin. Phys. B 21 040303

    [12]

    Xin J L, Liang J Q 2014 Sci. China: Phys. Mech. Astron. 57 1504

    [13]

    Brack M 1993 Rev. Mod. Phys. 65 677

    [14]

    Heer W A De 1993 Rev. Mod. Phys. 65 611

    [15]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [16]

    Hannay J H 1985 J. Phys. A 18 221

    [17]

    Liu H D 2011 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese) [刘昊迪 2011 博士学位论文(大连: 大连理工大学)]

    [18]

    Xin J L, Liang J Q 2015 Phys. Scr. 90 065207

    [19]

    Wang M H, Wei L F, Liang J Q 2015 Phys. Lett. A 379 1087

    [20]

    Liang J Q, Wei L F 2011 New Advances in Quantum Physics (Beijing: Science Press) (in Chinese) [梁九卿, 韦联福 2011 量子物理新进展(北京: 科学出版社)]

    [21]

    Lai Y Z, Liang J Q, Mller K, Zhou J G 1996 J. Phys. A 29 1773

    [22]

    Chen Y F, Lu T H, Su K W, Huang K F 2005 Phys. Rev. E 72 056210

  • [1]

    Makowski A J 2006 Eur. J. Phys. 27 1133

    [2]

    Nielsen J R 1976 Collected Works (Vol. 3): The Correspondence Principle (1918-1923) (Amsterdam: North-Holland)

    [3]

    Bohr N 1922 The Structure of the Atom Nobel Lecture, December 11, 1922

    [4]

    Bohr N 1923 Nature 112 29

    [5]

    Heisenberg W (translated by Eckart C, Hoyt F C) 1949 The Physical Principles of the Quantum Theory (New York: Dover Publications) p116

    [6]

    Schrödinger E 1926 Naturwissenschaften 14 664

    [7]

    Chen Y F 2011 Phys. Rev. A 83 032124

    [8]

    Chen Y F, Lan Y P, Huang K F 2003 Phys. Rev. A 68 043803

    [9]

    Chen Y F, Lu T H, Su K W, Huang K F 2006 Phys. Rev. Lett. 96 213902

    [10]

    Lu T H, Lin Y C, Chen Y F, Huang K F 2008 Phys. Rev. Lett. 101 233901

    [11]

    Xin J L, Liang J Q 2012 Chin. Phys. B 21 040303

    [12]

    Xin J L, Liang J Q 2014 Sci. China: Phys. Mech. Astron. 57 1504

    [13]

    Brack M 1993 Rev. Mod. Phys. 65 677

    [14]

    Heer W A De 1993 Rev. Mod. Phys. 65 611

    [15]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [16]

    Hannay J H 1985 J. Phys. A 18 221

    [17]

    Liu H D 2011 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese) [刘昊迪 2011 博士学位论文(大连: 大连理工大学)]

    [18]

    Xin J L, Liang J Q 2015 Phys. Scr. 90 065207

    [19]

    Wang M H, Wei L F, Liang J Q 2015 Phys. Lett. A 379 1087

    [20]

    Liang J Q, Wei L F 2011 New Advances in Quantum Physics (Beijing: Science Press) (in Chinese) [梁九卿, 韦联福 2011 量子物理新进展(北京: 科学出版社)]

    [21]

    Lai Y Z, Liang J Q, Mller K, Zhou J G 1996 J. Phys. A 29 1773

    [22]

    Chen Y F, Lu T H, Su K W, Huang K F 2005 Phys. Rev. E 72 056210

  • [1] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2021, (): . doi: 10.7498/aps.70.20210992
    [3] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径.  , 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [4] 杨志安. 非线性系统的非对角Berry相.  , 2013, 62(11): 110302. doi: 10.7498/aps.62.110302
    [5] 刘昊迪. Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角.  , 2013, 62(10): 100302. doi: 10.7498/aps.62.100302
    [6] 刘祥龙, 朱满座, 路璐. 等腰直角三角形的二维量子谱和经典轨道.  , 2012, 61(22): 220301. doi: 10.7498/aps.61.220301
    [7] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系.  , 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [8] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [9] 丁光涛. 规范变换对Birkhoff系统对称性的影响.  , 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [10] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位.  , 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [11] 李爱民, 李子平. 规范不变系统量子水平的变换性质及应用.  , 2008, 57(12): 7571-7576. doi: 10.7498/aps.57.7571
    [12] 何进春, 史丽娜, 陈 化, 黄念宁. Landau-Lifschitz铁磁方程的Hamilton理论和规范变换.  , 2005, 54(5): 2007-2012. doi: 10.7498/aps.54.2007
    [13] 贾艳伟, 刘全慧, 彭解华, 王鑫, 沈抗存. Heisenberg对应原理下氢原子1/r矩阵元的量子-经典对应.  , 2002, 51(2): 201-204. doi: 10.7498/aps.51.201
    [14] 李玲, 李伯臧, 梁九卿. 动边界量子含时谐振子系统的Lewis-Riesenfeld相位与Berry相位.  , 2001, 50(11): 2077-2082. doi: 10.7498/aps.50.2077
    [15] 李伯臧, 侯邦品, 余万伦. Berry型量子纯态与Berry型量子系统.  , 1998, 47(5): 712-717. doi: 10.7498/aps.47.712
    [16] 陈成明, 徐东辉. 超相干态与Berry相因数.  , 1992, 41(4): 529-534. doi: 10.7498/aps.41.529
    [17] 高孝纯, 许晶波, 钱铁铮. 广义含时谐振子的精确解和Berry相因数.  , 1991, 40(1): 25-32. doi: 10.7498/aps.40.25
    [18] 陈成明, 张全. 量子Hall效应与Berry相因数.  , 1991, 40(3): 345-352. doi: 10.7498/aps.40.345
    [19] 欧发. 关于动态位错场张量势的规范变换.  , 1981, 30(7): 968-971. doi: 10.7498/aps.30.968
    [20] 邝宇平, 马中骐, 许伯威, 易余萍. Cabibbo角的规范理论.  , 1975, 24(4): 291-300. doi: 10.7498/aps.24.291
计量
  • 文章访问数:  7474
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-09
  • 修回日期:  2015-08-27
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map