搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角

刘昊迪

引用本文:
Citation:

Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角

刘昊迪

Berry phase and Hannay's angle of an electromagnetic mode system driven by harmonic field with Born-Oppenheimer approximation

Liu Hao-Di
PDF
导出引用
  • 研究了Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角, 通过理论计算得到了其表达式, 并讨论了这二者之间的半经典关系.结果表明, 这一量子Born-Oppenheimer复合系统的Berry相包含两部分: 第一部分与通常几何相的定义相同, 另一项则是由耦合造成的有效规范式引入的.这一量子修正可以被看作一个等效的Aharonov-Bohm效应.不仅如此, 其对应经典系统的Hannay角的定义中也存在类似的现象. 由此可见, 这一复合系统的Berry相与Hannay角之间也存在半经典关系, 并与文献[16] 中通常情况下的半经典关系相同.此外, 上述理论也可以运用于解决产生中性原子的人造规范势等物理问题.
    In this paper, we investigate the Berry phase and Hannay's angle of an electromagnetic mode system driven by harmonic field with Born-Oppenheimer approximation and obtain their algebraic expressions by theoretical calculation. The semiclassical relation between Berry phase and Hannay's angle is discussed. We find that besides the usual connection term, the Berry phase of BO hybrid system contains a novel term brought forth by the coupling induced effective gauge potential. This quantum modification can be viewed as an effective Aharonov-Bohm effect. Moreover, a similar phenomenon is founded in the Hannay's angle of classical BO hybrid system, which indicates that the Berry phase and Hannay's angle possess the same relation as the usual one. Besides, our theory can also be used to generate Artificial gauge potentials for neutral atoms.
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2011CB921503)和 国家自然科学基金(批准号: 11075020, 91021021, 11274051)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921503), and the National Natural Science Foundation of China (Grant Nos. 11075020, 91021021, 11274051).
    [1]

    Born M, Oppenheimer J 1927 Ann. Phys. 84 457

    [2]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [3]

    Chruściński D, Jamiolkowski A 2004 Geometric Phases in Classical and Quantum Mechanics (Berlin: Birkhäuser)

    [4]

    Berry M V 1990 edited by Bregda U, Garmo G, Morandi G Anomalies, Phases, Defects (Naples: Bibliopolis)

    [5]

    Robbins J M 1997 arXiv1008.5331.

    [6]

    Bohm A, Mostafazadeh A, Koizumi H, Niu N, Zwanziger J 2003 The Geometric Phase in Quantum Systems (Berlin: Springe-Verlag)

    [7]

    Xiao D, Zhang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [8]

    Wang L C, Yan J Y, Yi X X 2010 Chin. Phys. B 19 040512

    [9]

    Jia X Y, Li W D, Liang J Q 2007 Chin. Phys. 16 2855

    [10]

    Wu J W, Guo G C 1995 Chin. Phys. 4 406

    [11]

    Liu H D, Yi X X 2011 Phys. Rev. A 84 022114

    [12]

    Shan C J 2012 Acta Phys. Sin. 61 220302 (in Chinese) [单传家 2012 61 220302]

    [13]

    Simon B 1983 Phys. Rev. Lett. 51 2167

    [14]

    Arnold V I 1978 Mathematical Methods of Classical Mechanics (Berlin: Springer-Verlag)

    [15]

    Hannay J H 1985 J. Phys. A 18 221

    [16]

    Berry M V 1985 J. Phys. A 18 15

    [17]

    Giavarini G, Gozzi E, Rohrlich D, Thacker W D 1989 Phys. Rev. D 39 3007

    [18]

    Jarzynski C 1995 Phys. Rev. Lett. 74 1264

    [19]

    Pati A K 1998 Ann. Phys. 270 178

    [20]

    Liu J, Hu B, Li B W 1998 Phys. Rev. Lett. 81 1749

    [21]

    Fu L B, Liu J 2010 Ann. Phys. 325 2425

    [22]

    Mead C A, Truhlar D 1979 J. Chem. Phys. 70 2284

    [23]

    Mead C A 1992 Rev. Mod. Phys. 64 51

    [24]

    Stone M 1986 Phys. Rev. D 33 1191

    [25]

    Berry M V, Robbins J M 1993 Proc. R. Soc. A 442 659

    [26]

    Gozzi E, Thacker W D 1987 Phys. Rev. D 35 2398

    [27]

    Sun C P, Ge M L 1990 Phys. Rev. D 41 1349

    [28]

    Zhang Q, Wu B 2006 Phys. Rev. Lett. 97 190401

    [29]

    Liu H D, Wu S L, Yi X X 2011 Phys. Rev. A 83 062101

    [30]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [31]

    Dalibard J, Gerbier F, Juzeliunas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

  • [1]

    Born M, Oppenheimer J 1927 Ann. Phys. 84 457

    [2]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [3]

    Chruściński D, Jamiolkowski A 2004 Geometric Phases in Classical and Quantum Mechanics (Berlin: Birkhäuser)

    [4]

    Berry M V 1990 edited by Bregda U, Garmo G, Morandi G Anomalies, Phases, Defects (Naples: Bibliopolis)

    [5]

    Robbins J M 1997 arXiv1008.5331.

    [6]

    Bohm A, Mostafazadeh A, Koizumi H, Niu N, Zwanziger J 2003 The Geometric Phase in Quantum Systems (Berlin: Springe-Verlag)

    [7]

    Xiao D, Zhang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [8]

    Wang L C, Yan J Y, Yi X X 2010 Chin. Phys. B 19 040512

    [9]

    Jia X Y, Li W D, Liang J Q 2007 Chin. Phys. 16 2855

    [10]

    Wu J W, Guo G C 1995 Chin. Phys. 4 406

    [11]

    Liu H D, Yi X X 2011 Phys. Rev. A 84 022114

    [12]

    Shan C J 2012 Acta Phys. Sin. 61 220302 (in Chinese) [单传家 2012 61 220302]

    [13]

    Simon B 1983 Phys. Rev. Lett. 51 2167

    [14]

    Arnold V I 1978 Mathematical Methods of Classical Mechanics (Berlin: Springer-Verlag)

    [15]

    Hannay J H 1985 J. Phys. A 18 221

    [16]

    Berry M V 1985 J. Phys. A 18 15

    [17]

    Giavarini G, Gozzi E, Rohrlich D, Thacker W D 1989 Phys. Rev. D 39 3007

    [18]

    Jarzynski C 1995 Phys. Rev. Lett. 74 1264

    [19]

    Pati A K 1998 Ann. Phys. 270 178

    [20]

    Liu J, Hu B, Li B W 1998 Phys. Rev. Lett. 81 1749

    [21]

    Fu L B, Liu J 2010 Ann. Phys. 325 2425

    [22]

    Mead C A, Truhlar D 1979 J. Chem. Phys. 70 2284

    [23]

    Mead C A 1992 Rev. Mod. Phys. 64 51

    [24]

    Stone M 1986 Phys. Rev. D 33 1191

    [25]

    Berry M V, Robbins J M 1993 Proc. R. Soc. A 442 659

    [26]

    Gozzi E, Thacker W D 1987 Phys. Rev. D 35 2398

    [27]

    Sun C P, Ge M L 1990 Phys. Rev. D 41 1349

    [28]

    Zhang Q, Wu B 2006 Phys. Rev. Lett. 97 190401

    [29]

    Liu H D, Wu S L, Yi X X 2011 Phys. Rev. A 83 062101

    [30]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [31]

    Dalibard J, Gerbier F, Juzeliunas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523

  • [1] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似.  , 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [3] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应.  , 2021, (): . doi: 10.7498/aps.70.20210992
    [4] 李兴华, 杨亚天. 球坐标中三维各向同性谐振子的类经典态.  , 2015, 64(8): 080301. doi: 10.7498/aps.64.080301
    [5] 辛俊丽, 沈俊霞. 谐振子系统的量子-经典轨道、Berry相及Hannay角.  , 2015, 64(24): 240302. doi: 10.7498/aps.64.240302
    [6] 员江娟, 陈铮, 李尚洁, 张静. 晶体相场法研究预变形对熔点附近六角相/正方相相变的影响.  , 2014, 63(16): 166401. doi: 10.7498/aps.63.166401
    [7] 杨志安. 非线性系统的非对角Berry相.  , 2013, 62(11): 110302. doi: 10.7498/aps.62.110302
    [8] 刘祥龙, 朱满座, 路璐. 等腰直角三角形的二维量子谱和经典轨道.  , 2012, 61(22): 220301. doi: 10.7498/aps.61.220301
    [9] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系.  , 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [10] 李兴华, 杨亚天, 徐躬耦. 类经典态——谐振子和无限深方势阱.  , 2009, 58(11): 7466-7472. doi: 10.7498/aps.58.7466
    [11] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位.  , 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [12] 贾艳伟, 刘全慧, 彭解华, 王鑫, 沈抗存. Heisenberg对应原理下氢原子1/r矩阵元的量子-经典对应.  , 2002, 51(2): 201-204. doi: 10.7498/aps.51.201
    [13] 李玲, 李伯臧, 梁九卿. 动边界量子含时谐振子系统的Lewis-Riesenfeld相位与Berry相位.  , 2001, 50(11): 2077-2082. doi: 10.7498/aps.50.2077
    [14] 宋建军, 李希国. 量子能谱中的长程关联.  , 2001, 50(9): 1661-1665. doi: 10.7498/aps.50.1661
    [15] 刘登云. 具有含时频率和边界条件的谐振子量子态的Berry相位.  , 1998, 47(8): 1233-1240. doi: 10.7498/aps.47.1233
    [16] 李伯臧, 侯邦品, 余万伦. Berry型量子纯态与Berry型量子系统.  , 1998, 47(5): 712-717. doi: 10.7498/aps.47.712
    [17] 朱栋培, 王桂星, 王仁川. 量子混合态的统计角.  , 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
    [18] 陈成明, 徐东辉. 超相干态与Berry相因数.  , 1992, 41(4): 529-534. doi: 10.7498/aps.41.529
    [19] 高孝纯, 许晶波, 钱铁铮. 广义含时谐振子的精确解和Berry相因数.  , 1991, 40(1): 25-32. doi: 10.7498/aps.40.25
    [20] 陈成明, 张全. 量子Hall效应与Berry相因数.  , 1991, 40(3): 345-352. doi: 10.7498/aps.40.345
计量
  • 文章访问数:  6529
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-19
  • 修回日期:  2012-12-29
  • 刊出日期:  2013-05-05

/

返回文章
返回
Baidu
map