搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电压控制正极性输出罗变换器的改进平均模型建模及稳定性分析

王发强 李晶 马西奎

引用本文:
Citation:

电压控制正极性输出罗变换器的改进平均模型建模及稳定性分析

王发强, 李晶, 马西奎

Improved averaged model and stability analysis of voltage-mode controlled positive output super-lift Luo converter

Wang Fa-Qiang, Li Jing, Ma Xi-Kui
PDF
导出引用
  • 基于平均建模法并考虑到正极性输出罗(positive output super-lift Luo, POSL Luo)变换器中能量传输电容电压存在突变的事实, 建立了POSL Luo变换器的改进平均模型, 推导并分析了POSL Luo变换器输出电压对占空比的传递函数. 建立了电压控制POSL Luo变换器的输出电压对基准电压的传递函数, 分析了系统的稳定性. 采用PSIM软件进行电路仿真以及设计硬件电路进行电路实验, 以PSIM仿真结果和电路实验结果验证了模型的有效性和理论分析的正确性. 研究结果表明: 相比于POSL Luo变换器已有的平均模型, 采用本文的改进平均模型可有效的分析POSL Luo变换器的特性及电压控制POSL Luo变换器的稳定性.
    Positive output super-lift (POSL) Luo converter, which has some particular good features: such as its power switch being grounded, high voltage gain and positive polarity output, is a good topology for overcoming the drawbacks of the conventional Buck and Boost converters to obtain high output voltage and power for satisfying the requirements in practical engineering. In this paper, based on the averaging method and taking into account the abrupt changing of the voltage across the energy-transferring capacitor, the improved reduced order averaged model and the corresponding small signal model of the POSL Luo converter are established, and its transfer function from the duty cycle to the output voltage is derived and analyzed. By combining the derived transfer function from the duty cycle to the output voltage of the POSL Luo converter, with that for the voltage compensator and that for the pulse width modalation (PWM) generator, the transfer function from the reference voltage to the output voltage of the voltage-mode controlled POSL Luo converter is also derived. And then, the stability of the voltage-mode controlled POSL Luo converter is identified by calculating the poles of its transfer function from the reference voltage to the output voltage, so the corresponding stability boundaries are obtained. The power electronic simulator (PSIM) software is applied to simulate the POSL Luo converter in time domain and frequency domain to preliminarily confirm the effectiveness of the established transfer function from the duty cycle to the output voltage of the POSL Luo converter, and to simulate the voltage-mode controlled POSL Luo converter to preliminarily verify the theoretical analysis about its stability. Finally, the hardware circuits for the POSL Luo converter and the voltage-mode controlled POSL Luo converter are designed, and the circuit experimental results in time domain from the digital oscilloscope and in frequency domain from the impedance/gain-phase analyzer are presented for further validation. Theoretical analysis, PSIM simulations and circuit experiments are in basic agreement with one other, and all of them demonstrate that it is effective to use the improved average model to analyze the performance of the POSL Luo converter and the stability of the voltage-mode controlled POSL Luo converter.
      通信作者: 王发强, faqwang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51377124, 51221005)、高等学校全国优秀博士学位论文作者专项资金(批准号: 201337)、教育部新世纪优秀人才支持计划(批准号: NCET-13-0457)、中央高校基本科研业务费专项资金(批准号: 2012jdgz09)和电力设备电气绝缘国家重点实验室(批准号: EIPE15313)资助的课题.
      Corresponding author: Wang Fa-Qiang, faqwang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51377124, 51221005), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201337), the Program for New Century Excellent Talents in University of China (Grant No. NCET-13-0457), the Fundamental Research Funds for the Central Universities,China (Grant No. 2012jdgz09), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE15313).
    [1]

    Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504

    [2]

    Sha J, Xu J P, Xu L J, Zhong S 2014 Acta Phys. Sin. 63 248401 (in Chinese) [沙金, 许建平, 许丽君, 钟曙 2014 63 248401]

    [3]

    Zhao Y B, Zhang D Y, Zhang C J 2007 Chin. Phys. 16 933

    [4]

    Wang X M, Zhang B, Qiu D Y 2011 IEEE Trans. Power Electron. 26 2101

    [5]

    Li G L, Li C Y, Chen X Y, Zhang X W 2013 Acta Phys. Sin. 62 210505 (in Chinese) [李冠林, 李春阳, 陈希有, 张晓伟 2013 62 210505]

    [6]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circ. Syst. I 55 687

    [7]

    Ismail E H, Al-Saffar M A, Sabzali A J, Fardoun A A 2008 IEEE Trans. Circ. Syst. I 55 1159

    [8]

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505 (in Chinese) [刘洪臣, 杨爽, 王国立, 李飞 2013 62 150505]

    [9]

    Luo F L, Ye H 2003 IEEE Trans. Power Electron. 18 105

    [10]

    Zhu M, Luo F L 2009 J. Power Electron. 9 854

    [11]

    Ramash Kumar K, Jeevananthan S 2011 J. Power Electron. 11 639

    [12]

    Ramash Kumar K, Jeevananthan S 2010 World Acad. Sci. Eng. Technol. 4 623

    [13]

    Baghramian A, Eshyani H G 2013 4m th Power Electronics, Drive Systems & Technologies ConferenceTehran, Iran, February 13-14, 2013 p170

    [14]

    Kumar Ray S, Paul D, Nur T E, Paul K C 2012 Int. J. Innovat. Manage. Technol. 3 146

    [15]

    Shan Z L, Liu S, Luo F L 2012 China International Conference on Electricity Distribution Shanghai, China, September 5-6, 2012 p1

    [16]

    Middlebrook R D, Cuk S 1997 Int. J. Electron. 42 521

    [17]

    Zhang W P 2005 Modeling and Control of Switching Converter (Beijing: Chinese Electric Power Press) p15-125 (in Chinese) [张卫平 2005 开关变换器的建模与控制(北京: 中国电力出版社)第15–125页]

    [18]

    Onoda S, Emadi A 2004 IEEE Trans. Vehic. Technol. 53 390

    [19]

    Powersim Inc. (2010). PSIM User's Guide: Version 9.0, Release 3

    [20]

    Femia N, Fortunato M, Petrone G, Spagnuolo G, Vitelli M 2009 Int. J. Circ. Theor. Appl. 37 661

  • [1]

    Zhou G H, Xu J P, Bao B C, Zhang F, Liu X S 2010 Chin. Phys. Lett. 27 090504

    [2]

    Sha J, Xu J P, Xu L J, Zhong S 2014 Acta Phys. Sin. 63 248401 (in Chinese) [沙金, 许建平, 许丽君, 钟曙 2014 63 248401]

    [3]

    Zhao Y B, Zhang D Y, Zhang C J 2007 Chin. Phys. 16 933

    [4]

    Wang X M, Zhang B, Qiu D Y 2011 IEEE Trans. Power Electron. 26 2101

    [5]

    Li G L, Li C Y, Chen X Y, Zhang X W 2013 Acta Phys. Sin. 62 210505 (in Chinese) [李冠林, 李春阳, 陈希有, 张晓伟 2013 62 210505]

    [6]

    Axelrod B, Berkovich Y, Ioinovici A 2008 IEEE Trans. Circ. Syst. I 55 687

    [7]

    Ismail E H, Al-Saffar M A, Sabzali A J, Fardoun A A 2008 IEEE Trans. Circ. Syst. I 55 1159

    [8]

    Liu H C, Yang S, Wang G L, Li F 2013 Acta Phys. Sin. 62 150505 (in Chinese) [刘洪臣, 杨爽, 王国立, 李飞 2013 62 150505]

    [9]

    Luo F L, Ye H 2003 IEEE Trans. Power Electron. 18 105

    [10]

    Zhu M, Luo F L 2009 J. Power Electron. 9 854

    [11]

    Ramash Kumar K, Jeevananthan S 2011 J. Power Electron. 11 639

    [12]

    Ramash Kumar K, Jeevananthan S 2010 World Acad. Sci. Eng. Technol. 4 623

    [13]

    Baghramian A, Eshyani H G 2013 4m th Power Electronics, Drive Systems & Technologies ConferenceTehran, Iran, February 13-14, 2013 p170

    [14]

    Kumar Ray S, Paul D, Nur T E, Paul K C 2012 Int. J. Innovat. Manage. Technol. 3 146

    [15]

    Shan Z L, Liu S, Luo F L 2012 China International Conference on Electricity Distribution Shanghai, China, September 5-6, 2012 p1

    [16]

    Middlebrook R D, Cuk S 1997 Int. J. Electron. 42 521

    [17]

    Zhang W P 2005 Modeling and Control of Switching Converter (Beijing: Chinese Electric Power Press) p15-125 (in Chinese) [张卫平 2005 开关变换器的建模与控制(北京: 中国电力出版社)第15–125页]

    [18]

    Onoda S, Emadi A 2004 IEEE Trans. Vehic. Technol. 53 390

    [19]

    Powersim Inc. (2010). PSIM User's Guide: Version 9.0, Release 3

    [20]

    Femia N, Fortunato M, Petrone G, Spagnuolo G, Vitelli M 2009 Int. J. Circ. Theor. Appl. 37 661

  • [1] 郑连清, 彭一. 电压型buck-boost变换器的混沌控制.  , 2016, 65(22): 220502. doi: 10.7498/aps.65.220502
    [2] 刘啸天, 周国华, 李振华, 陈兴. 基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析.  , 2015, 64(22): 228401. doi: 10.7498/aps.64.228401
    [3] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响.  , 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [4] 杨祎巍, 刘佳林, 李斌. 基于比例积分控制的电压反馈型Buck变换器分岔.  , 2014, 63(4): 040502. doi: 10.7498/aps.63.040502
    [5] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [6] 吴松荣, 何圣仲, 许建平, 周国华, 王金平. 电压型双频率控制开关变换器的动力学建模与多周期行为分析.  , 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [7] 吴旋律, 肖国春, 雷博. 数字控制单相全桥电压型逆变电路的改进离散迭代模型.  , 2013, 62(5): 050503. doi: 10.7498/aps.62.050503
    [8] 徐红梅, 金永镐, 郭树旭. 电压控制不连续导电模式DC-DC变换器的熵特性研究.  , 2013, 62(24): 248401. doi: 10.7498/aps.62.248401
    [9] 张希, 包伯成, 王金平, 马正华, 许建平. 固定关断时间控制Buck变换器输出电容等效串联电阻的稳定性分析.  , 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [10] 谢玲玲, 龚仁喜, 卓浩泽, 马献花. 电压模式控制不连续传导模式boost变换器切分岔研究.  , 2012, 61(5): 058401. doi: 10.7498/aps.61.058401
    [11] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现.  , 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [12] 王发强, 马西奎, 闫晔. 不同开关频率下电压控制升压变换器中的Hopf分岔分析.  , 2011, 60(6): 060510. doi: 10.7498/aps.60.060510
    [13] 秦明, 许建平. 开关变换器多级脉冲序列控制研究.  , 2009, 58(11): 7603-7612. doi: 10.7498/aps.58.7603
    [14] 王发强, 张浩, 马西奎, 李秀明. 平均电流控制型Boost功率因数校正变换器中的中频振荡现象分析.  , 2009, 58(10): 6838-6844. doi: 10.7498/aps.58.6838
    [15] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制.  , 2007, 56(7): 3789-3795. doi: 10.7498/aps.56.3789
    [16] 张小平, 朱建林, 文泽军, 岳 舟, 柳莎莎. 一种基于双闭环控制策略的新型矩阵变换器研究.  , 2007, 56(5): 2523-2528. doi: 10.7498/aps.56.2523
    [17] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化.  , 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [18] 卢伟国, 周雒维, 罗全明. 电压模式BUCK变换器输出延迟反馈混沌控制.  , 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [19] 赵益波, 罗晓曙, 方锦清, 汪秉宏. 电压反馈型DC-DC变换器的稳定性研究.  , 2005, 54(11): 5022-5026. doi: 10.7498/aps.54.5022
    [20] 邹艳丽, 罗晓曙, 方锦清, 汪秉宏. 脉冲电压微分反馈法控制buck功率变换器中的混沌.  , 2003, 52(12): 2978-2984. doi: 10.7498/aps.52.2978
计量
  • 文章访问数:  5827
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-28
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map