搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牙齿组织光热动态特性仿真与试验研究

刘俊岩 王飞 王晓春 马莹 王扬

引用本文:
Citation:

牙齿组织光热动态特性仿真与试验研究

刘俊岩, 王飞, 王晓春, 马莹, 王扬

Simulation and experimental investigation of tooth tissue in photothermal radiometry dynamic response induced by modluated laser

Liu Jun-Yan, Wang Fei, Wang Xiao-Chun, Ma Ying, Wang Yang
PDF
导出引用
  • 调制激光作用牙齿组织发生散射形成光子密度波, 而由于光热效应产生热波, 基于一维介质辐射传输漫射近似方程与一维热传导方程建立了调制激光作用牙齿组织半透明混合介质的一维热波数学模型. 利用该模型仿真分析了牙齿龋损特性参数(牙釉质龋损层光吸收系数、散射系数、热扩散系数及龋损深度)对光热辐射动态响应特性的影响与规律. 利用红外探测器(HgCdTe, 212 m)记录808 nm半导体激光激发牙齿组织产生的热波信号, 由锁相放大器计算热波信号的幅值与相位. 通过频率扫描试验获得了牙齿组织的光热动态响应, 利用多参数最佳统计拟合方法得到了牙齿组织特性参数. 结果表明光热辐射测量对牙齿组织不均匀性和龋损特性均具有较高敏感性与特异性.
    The photon-density wave is generated in tooth tissue due to the scattering induced by modulated laser beams, and furthermore, thermal-wave will form because of photothermal effect. A one-dimensional thermal-wave model for three-layer tooth tissue using modulated laser stimulation is developed based on 1D diffusion approximation of the radiative transfer theory in combination with 1D heat conduction equation. Effects of photothermal properties (i.e. light absorption coefficient, scattering coefficient and thermal diffusivity coefficient), enamel depth and caries depth on the photothermal radiometry (PTR) dynamic responses are investigated based on the 1D thermal wave model coupling with photon-density wave. The PTR amplitude and phase delay (the phase difference between the PTR signal and reference signal) are strongly dependent on the photothermal parameters of the dental enamel caries layers (DECLs). PTR amplitude and phase delay increase with increasing DECL absorption coefficient, scattering coefficient and thermal diffusivity. Additionally, PTR amplitude may also increase due to the larger thickness of caries layer, and the PTR phase peak value is generated at low frequencies. The inhomogeneous photothermal properties of dental enamel healthy layer (DEHL) also have obviously influenced PTR amplitude and phase. Increasing DEHL scattering coefficient leads to the increase of PTR amplitude, but has no apparent effect on the PTR phase. While the PTR phase delay increases with increasing DEHL absorption coefficient. The delay of PTR amplitude and phase is enlarged at the high value of DEHL thermal diffusivity. However, the DEHL layer thickness has no apparent effect on the PTR amplitude and phase.The PTR signal of tooth tissue induced by the 808 nm diode laser is monitored using an infrared detector (HgCdTe, spectral width 2.012.0 m), and the PTR amplitude and phase response are obtained using lock-in amplifier (SR830). Through frequency-scanning experiments of dental tissue, PTR dynamic responses can be measured and employed to characterize the inhomogeneity and caries of the tooth tissue. The photothermal parameters and caries characteristic of the tooth issue can be simultaneously obtained by multi-parameters statistic best-fit.Simulation and experimental results show that the PTR dynamic response has the advantages of high sensitivity and high contrast for inhomogeneity and caries of the tooth tissue.
      通信作者: 王扬, wyyh@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51173034)和机器人技术与系统国家重点实验室(哈尔滨工业大学)资助的课题.
      Corresponding author: Wang Yang, wyyh@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51173034), and the Self-planned Task of State Key Laboratory of Robotics and System (HIT).
    [1]

    Shen H, Hu D Y 2013 Stomatology 33 148 (in Chinese) [沈红, 胡德渝 2013 口腔医学 33 148]

    [2]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. sin. 62 114202(in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [3]

    Yang Y L, Ding Z. H, Wang K, Wu L, Wu L 2009 Acta Phys. sin. 58 1773(in Chinese) [杨亚良, 丁志华, 王凯, 吴凌, 吴兰 2009 58 1773]

    [4]

    Hriasuna K, Fried D, Darling C L 2008 Proc. J. Biomed. Opt. 13 044011

    [5]

    Meng Z, Yao X T, Lan S F, Yao H, Liu T G, Li Y N, Liang Y, Wang G H 2010 Acta Laser Biology Sinica 19 121 (in Chinese) [孟卓, 姚晓天, 兰寿锋, 姚辉, 刘铁根, 李燕妮, 梁燕, 王冠华 2010 激光生物学报 19 121]

    [6]

    Tang J, Liu L, Li S Z 2009 Acta Optica sin. 29 454 (in Chinese) [唐静, 刘莉, 李颂战 2009 光学学报 29 454]

    [7]

    Mandelis A, Nicolaides L, Feng C, Abrams S H 2000 Proc. SPIE 3916 130

    [8]

    Nicolaides L, Mandelis A, Abrams S H 2000 J. Biomed. Opt. 5 31

    [9]

    Mandelis A 2002 Proc. SPIE 4710 373

    [10]

    Matvienko A, Mandelis A, Jeon R J, Abrams S H 2009 J. Appl. Phys. 105 102022

    [11]

    Jeon R J, Hellen A, Matvienko A, Mandelis A 2008 J. Biomed. Opt. 13 034025

    [12]

    Mandelis A, Feng C 2002 Phys. Rev. E 65 021909

    [13]

    Ishimaru A 1983 J. Opt. Soc. 73 131

    [14]

    Marleen K, Star W M, Pascal R M Storchi 1988 Appl. Opt. 27 1820

    [15]

    Matvienko A, Mandelis A, Hellen A, Jeon R, Abrams S, Amaechi B 2009 Proc. SPIE 7166 8

    [16]

    Hellon A 2010 MS Thesis (Toronto: University of Toronto)

    [17]

    Matvienko A, Mandelis A, Abrams S 2009 Appl. Opt. 48 3197

    [18]

    Brown W S, Dewey W A, Jacob H R 1970 J. Dent. Res. 49 752

    [19]

    Smitch T M, Olejniczak A J, Reid D J 2006 Oral Biol. 51 974

  • [1]

    Shen H, Hu D Y 2013 Stomatology 33 148 (in Chinese) [沈红, 胡德渝 2013 口腔医学 33 148]

    [2]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. sin. 62 114202(in Chinese) [鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [3]

    Yang Y L, Ding Z. H, Wang K, Wu L, Wu L 2009 Acta Phys. sin. 58 1773(in Chinese) [杨亚良, 丁志华, 王凯, 吴凌, 吴兰 2009 58 1773]

    [4]

    Hriasuna K, Fried D, Darling C L 2008 Proc. J. Biomed. Opt. 13 044011

    [5]

    Meng Z, Yao X T, Lan S F, Yao H, Liu T G, Li Y N, Liang Y, Wang G H 2010 Acta Laser Biology Sinica 19 121 (in Chinese) [孟卓, 姚晓天, 兰寿锋, 姚辉, 刘铁根, 李燕妮, 梁燕, 王冠华 2010 激光生物学报 19 121]

    [6]

    Tang J, Liu L, Li S Z 2009 Acta Optica sin. 29 454 (in Chinese) [唐静, 刘莉, 李颂战 2009 光学学报 29 454]

    [7]

    Mandelis A, Nicolaides L, Feng C, Abrams S H 2000 Proc. SPIE 3916 130

    [8]

    Nicolaides L, Mandelis A, Abrams S H 2000 J. Biomed. Opt. 5 31

    [9]

    Mandelis A 2002 Proc. SPIE 4710 373

    [10]

    Matvienko A, Mandelis A, Jeon R J, Abrams S H 2009 J. Appl. Phys. 105 102022

    [11]

    Jeon R J, Hellen A, Matvienko A, Mandelis A 2008 J. Biomed. Opt. 13 034025

    [12]

    Mandelis A, Feng C 2002 Phys. Rev. E 65 021909

    [13]

    Ishimaru A 1983 J. Opt. Soc. 73 131

    [14]

    Marleen K, Star W M, Pascal R M Storchi 1988 Appl. Opt. 27 1820

    [15]

    Matvienko A, Mandelis A, Hellen A, Jeon R, Abrams S, Amaechi B 2009 Proc. SPIE 7166 8

    [16]

    Hellon A 2010 MS Thesis (Toronto: University of Toronto)

    [17]

    Matvienko A, Mandelis A, Abrams S 2009 Appl. Opt. 48 3197

    [18]

    Brown W S, Dewey W A, Jacob H R 1970 J. Dent. Res. 49 752

    [19]

    Smitch T M, Olejniczak A J, Reid D J 2006 Oral Biol. 51 974

  • [1] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器.  , 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距.  , 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究.  , 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率.  , 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [5] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究.  , 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [6] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响.  , 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [7] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解.  , 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [8] 孙兵兵, 吴博, 王辉, 黄志祥, 吴先良. 基于四能级原子系统模型增益媒质激光原理研究.  , 2012, 61(22): 220206. doi: 10.7498/aps.61.220206
    [9] 张永康, 于水生, 姚红兵, 王飞, 任爱国, 裴旭. 强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究.  , 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [10] 刘超, 张冬仙, 章海军. 微型光热驱动机构的光热膨胀理论模型与实验研究.  , 2009, 58(4): 2619-2624. doi: 10.7498/aps.58.2619
    [11] 李九生, 李向军. 玉米油光学参数的太赫兹波精确测定研究.  , 2009, 58(8): 5805-5809. doi: 10.7498/aps.58.5805
    [12] 廖乃镘, 李 伟, 蒋亚东, 匡跃军, 祁康成, 李世彬, 吴志明. 椭偏透射法测量氢化非晶硅薄膜厚度和光学参数.  , 2008, 57(3): 1542-1547. doi: 10.7498/aps.57.1542
    [13] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程.  , 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [14] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算.  , 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [15] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率.  , 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [16] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究.  , 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [17] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究.  , 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [18] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离.  , 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [19] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化.  , 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率.  , 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  6210
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-05-10
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map