搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气折射对可见光波段辐射传输特性的影响

胡帅 高太长 李浩 刘磊 程天际 张婷

引用本文:
Citation:

大气折射对可见光波段辐射传输特性的影响

胡帅, 高太长, 李浩, 刘磊, 程天际, 张婷

Influence of atmospheric refraction on radiative transfer at visible light band

Hu Shuai, Gao Tai-Chang, Li Hao, Liu Lei, Cheng Tian-Ji, Zhang Ting
PDF
导出引用
  • 折射是影响辐射传输的重要因素. 为分析大气折射对辐射传输的影响, 基于Monte Carlo方法, 给出了考虑大气折射的矢量辐射传输模型, 实现了均匀气层和耦合面处光子随机运动过程的模拟, 实现了直射光及漫射光Stokes矢量、偏振度和辐射通量等参数的计算. 在考虑和不考虑大气折射两种条件下, 验证了模型的准确性; 在纯瑞利散射条件下, 讨论了大气折射对不同方向漫射光Stokes矢量的影响; 在不同太阳天顶角、大气廓线、气溶胶及含云大气条件下, 分析了大气折射对辐射传输过程的影响. 结果表明: 大气折射对漫射光Stokes矢量的影响主要体现在天顶角70110区间, 且随着太阳入射角增大, 其影响更为显著; 不同大气廓线情形下, 大气折射对Stokes矢量的影响不一致, 其原因是不同大气廓线对应的折射率廓线存在差异. 含云及含气溶胶大气条件下, 大气折射对辐射传输的影响变弱, 沙尘型及海盐型气溶胶条件下, 折射对辐射传输的影响强于可溶型气溶胶情形; 不同形状气溶胶条件下, 大气折射对辐射传输的影响也存在显著差异; 不同云高条件下, 大气折射对漫射光Stokes矢量的影响无显著差异, 但随着云光学厚度增大, 大气折射的影响减弱.
    Refraction is an important factor influencing radiative transfer since it can change both the propagation path and polarization state of electromagnetic wave. In order to discuss the influence of atmospheric refraction on radiative transfer process, a Monte Carlo vector radiative transfer model, which takes atmospheric refraction into account, is introduced. By using this model, photon random movement in uniform atmospheric layer and at the interfaces between adjacent layers is simulated, Stokes vectors and degrees of polarizations of both directly transmitted and diffuse light, and irradiance at the specific layer is also calculated. The model is validated under two conditions: with taking atmospheric refraction into account, and comparing the simulation results with those in the literature; with taking refraction index distributed homogeneously in space, in which case the model is validated against DISORT and RT3. So, the results indicates that our model is accurate and reliable. The influences of atmospheric refraction on the Stokes vectors of diffuse light in different directions are discussed for pure molecular atmosphere, with only Rayleigh scattering considered. Simulations are performed respectively for different solar zenith angles, for different atmospheric profiles, for aerosols with different types and particle shapes, and for clouds with different base heights and optical depths, and correspondingly, the effect of atmospheric refraction on radiative transfer process is discussed as well. Simulation results show that Stokes vector of diffuse light is influenced by atmospheric refraction to a certain extent, especially for light with a zenith angle ranging from 70 to 110, and with the increasing of solar zenith angle, the influence becomes stronger. When atmospheric profile changes, the effect of atmospheric refraction on polarized radiance field is also changed, for which the possible reason is that deference between atmospheric profiles leads to the variation of refraction index profile. When aerosol and cloud are taken into account, the influence of atmospheric refraction is reduced because of the decreasing of the ratio between side-scattering energy and backward scattering energy. Comparing the simulation results for different aerosol particles shows that the influences of atmospheric refractions in mineral and sea salt aerosol are much stronger than that in water soluble aerosol, besides, there is also great discrepancy among results for aerosols with different shapes. This phenomenon may be explained by the differences in scattering ability and spatial distribution of scattering energy among different aerosols. For cloud, there is no significant difference in result among different cloud base heights, while with the increasing of cloud optical depth, the influence of atmospheric refraction on polarized radiance is gradually weakened.
      通信作者: 高太长, 2009gaotc@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 41575025, 41475020, 41475024)资助的课题.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41575025, 41475020, 41475024).
    [1]

    Sheng P X, Mao J T, Li J G, et al. 2003 Atmospheric Physics (Beijing: Beijing University Express) p62 (in Chinese) [盛裴轩, 毛节泰, 李建国, 等 2003 大气物理学 (北京: 北京大学出版社)第62页]

    [2]

    Liou K N 2003 An Introduction To Atmospheric Radiation (San Diego: Academic Press) p100

    [3]

    Ricchiazzi P, Yang S, Gautier C, Sowle D 1998 B. Am. Meteor. Soc. 79 2101

    [4]

    Mishchenko M I, Travis L D 1997 J. Geophys. Res. 102 16989

    [5]

    Mcguire P C, Wolff M J, Smith M D, Arvidson R E, Murchie S L 2008 IEEE Trans. Geosci. Remote Sens. 46 4020

    [6]

    Wu Z S, You J G, Yang R K 2004 Chin. J. Lasers 31 1075 [吴振森, 由金光, 杨瑞科 2004 中国激光 31 1075]

    [7]

    Rao R Z 2012 Modern Optics (Beijing: Scientific Express) p123 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社)第123页]

    [8]

    Sommersten E R, Lotsberg J K, Stamnes K, Stamnes J J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 616

    [9]

    Stamnes K 2000 Disort, A General Purpose Fortran Program For Discrete Ordinate Method Radiative Transfer In Scattering And Emitting Layered Media: Documentation Of Methodology. Distort Report 1.1

    [10]

    Hovenier J W 1971 Astron. Astrophys. 13 7

    [11]

    Lacis A A, Mishchenko C J, Caërns M I 1998 Geophys. Res. Lett. 25 135

    [12]

    Zheng Q, Li P, Devaux C, Gu X, Qiao Y, Zhao F, Chen H 2004 Atmospheric Res. 71 233

    [13]

    Hu S, Gao T C, Li H, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 094201(in Chinese) [胡帅, 高太长, 李浩, 刘磊, 易洪亮, 贲勋 2015 64 094201]

    [14]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [15]

    Schulz F M, Stamnes K 2000 J. Quant. Spectrosc. Radiat. Transfer 65 609

    [16]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [17]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [18]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 10392

    [19]

    Whitney A B 2011 Bull. Astr. Soc. India 39 1

    [20]

    Xun B, Yi H L, Tan H P 2014 Appl. Opt. 53 1427

    [21]

    Kattawar G W, Adams C N 1989 Limnol. Oceanogr. 34 1453

    [22]

    Zhai P W, Hu Y, Trepte C R, Lucker P L 2009 Opt. Express 17 2057

    [23]

    Zhai P W, Hu Y, Chowdhary J, Trepte C R, Lucker P L, Josset D B 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1025

    [24]

    Garcia R D M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2251

    [25]

    Garcia R D M 2013 J. Quant. Spectrosc. Radiat. Transfer 115 28

    [26]

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 247(in Chinese) [梁子长, 金亚秋 2003 52 247]

    [27]

    Emde C, Buras R, Blumthaler M 2010 Atmos. Chem. Phys. 10 383

    [28]

    Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501

    [29]

    Wang H X, Zu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214(in Chinese) [王红霞, 竹有章, 田涛, 李爱君 2013 62 024214]

    [30]

    Prahl S, Keijzer M, Jacques S L, Welch A J 1989 Dosimetry of Laser Radiation in Medicine and Biology 5 102

    [31]

    Mayer B 2009 Eur. Phys. J. Confer. 1 75

    [32]

    Hess M, Koepke P, Schult I 1998 B. Am. Meteor. Soc. 79 831

    [33]

    Hu S, Gao T C, Liu L, Liu Z T 2013 J. Light Scat. 25 338 (in Chinese) [胡帅, 高太长, 刘磊, 刘志田 2013 光散射学报 25 338]

    [34]

    Hu S, Gao T C, Liu L 2014 J. Meteorol. Sci. 34 612 (in Chinese) [胡帅, 高太长, 刘磊 2014 气象科学 34 612]

  • [1]

    Sheng P X, Mao J T, Li J G, et al. 2003 Atmospheric Physics (Beijing: Beijing University Express) p62 (in Chinese) [盛裴轩, 毛节泰, 李建国, 等 2003 大气物理学 (北京: 北京大学出版社)第62页]

    [2]

    Liou K N 2003 An Introduction To Atmospheric Radiation (San Diego: Academic Press) p100

    [3]

    Ricchiazzi P, Yang S, Gautier C, Sowle D 1998 B. Am. Meteor. Soc. 79 2101

    [4]

    Mishchenko M I, Travis L D 1997 J. Geophys. Res. 102 16989

    [5]

    Mcguire P C, Wolff M J, Smith M D, Arvidson R E, Murchie S L 2008 IEEE Trans. Geosci. Remote Sens. 46 4020

    [6]

    Wu Z S, You J G, Yang R K 2004 Chin. J. Lasers 31 1075 [吴振森, 由金光, 杨瑞科 2004 中国激光 31 1075]

    [7]

    Rao R Z 2012 Modern Optics (Beijing: Scientific Express) p123 (in Chinese) [饶瑞中 2012 现代大气光学(北京: 科学出版社)第123页]

    [8]

    Sommersten E R, Lotsberg J K, Stamnes K, Stamnes J J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 616

    [9]

    Stamnes K 2000 Disort, A General Purpose Fortran Program For Discrete Ordinate Method Radiative Transfer In Scattering And Emitting Layered Media: Documentation Of Methodology. Distort Report 1.1

    [10]

    Hovenier J W 1971 Astron. Astrophys. 13 7

    [11]

    Lacis A A, Mishchenko C J, Caërns M I 1998 Geophys. Res. Lett. 25 135

    [12]

    Zheng Q, Li P, Devaux C, Gu X, Qiao Y, Zhao F, Chen H 2004 Atmospheric Res. 71 233

    [13]

    Hu S, Gao T C, Li H, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 094201(in Chinese) [胡帅, 高太长, 李浩, 刘磊, 易洪亮, 贲勋 2015 64 094201]

    [14]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [15]

    Schulz F M, Stamnes K 2000 J. Quant. Spectrosc. Radiat. Transfer 65 609

    [16]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [17]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [18]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 10392

    [19]

    Whitney A B 2011 Bull. Astr. Soc. India 39 1

    [20]

    Xun B, Yi H L, Tan H P 2014 Appl. Opt. 53 1427

    [21]

    Kattawar G W, Adams C N 1989 Limnol. Oceanogr. 34 1453

    [22]

    Zhai P W, Hu Y, Trepte C R, Lucker P L 2009 Opt. Express 17 2057

    [23]

    Zhai P W, Hu Y, Chowdhary J, Trepte C R, Lucker P L, Josset D B 2010 J. Quant. Spectrosc. Radiat. Transfer 111 1025

    [24]

    Garcia R D M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2251

    [25]

    Garcia R D M 2013 J. Quant. Spectrosc. Radiat. Transfer 115 28

    [26]

    Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 247(in Chinese) [梁子长, 金亚秋 2003 52 247]

    [27]

    Emde C, Buras R, Blumthaler M 2010 Atmos. Chem. Phys. 10 383

    [28]

    Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501

    [29]

    Wang H X, Zu Y Z, Tian T, Li A J 2013 Acta Phys. Sin. 62 024214(in Chinese) [王红霞, 竹有章, 田涛, 李爱君 2013 62 024214]

    [30]

    Prahl S, Keijzer M, Jacques S L, Welch A J 1989 Dosimetry of Laser Radiation in Medicine and Biology 5 102

    [31]

    Mayer B 2009 Eur. Phys. J. Confer. 1 75

    [32]

    Hess M, Koepke P, Schult I 1998 B. Am. Meteor. Soc. 79 831

    [33]

    Hu S, Gao T C, Liu L, Liu Z T 2013 J. Light Scat. 25 338 (in Chinese) [胡帅, 高太长, 刘磊, 刘志田 2013 光散射学报 25 338]

    [34]

    Hu S, Gao T C, Liu L 2014 J. Meteorol. Sci. 34 612 (in Chinese) [胡帅, 高太长, 刘磊 2014 气象科学 34 612]

  • [1] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究.  , 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析.  , 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [3] 殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠. 分振幅型全Stokes同时偏振成像系统波片相位延迟误差分析.  , 2019, 68(2): 024203. doi: 10.7498/aps.68.20181553
    [4] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真.  , 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [5] 胡帅, 高太长, 李浩, 程天际, 刘磊, 黄威, 江诗阳. 低太阳高度角条件下的天空偏振模式模拟及大气折射影响研究.  , 2016, 65(1): 014203. doi: 10.7498/aps.65.014203
    [6] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真.  , 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [7] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术.  , 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [8] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [9] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟.  , 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究.  , 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [11] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围.  , 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [12] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究.  , 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [13] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟.  , 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [14] 蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力. 临近空间大气中子环境的仿真研究.  , 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [15] 关治强, 薛岩频, 林 海, 何贵丽, 吴晨旭. 钠离子浓度对核小体纤维结构影响的Monte Carlo模拟.  , 2006, 55(1): 460-464. doi: 10.7498/aps.55.460
    [16] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [17] 孙 霞, 尤四方, 肖 沛, 丁泽军. 电子束光刻的邻近效应及其模拟.  , 2006, 55(1): 148-154. doi: 10.7498/aps.55.148
    [18] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究.  , 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [19] 姚细林, 王新兵, 赖建军. 微空心阴极放电的Monte Carlo模拟研究.  , 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
    [20] 季达人, 张剑波, 应和平. 三维随机点阵三态矢量Potts模型Monte Carlo模拟.  , 1992, 41(7): 1162-1166. doi: 10.7498/aps.41.1162
计量
  • 文章访问数:  7394
  • PDF下载量:  1109
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-01
  • 修回日期:  2015-04-13
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map