搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu对用于高速相变存储器的Sb2Te薄膜的结构及相变的影响研究

王东明 吕业刚 宋三年 王苗 沈祥 王国祥 戴世勋 宋志棠

引用本文:
Citation:

Cu对用于高速相变存储器的Sb2Te薄膜的结构及相变的影响研究

王东明, 吕业刚, 宋三年, 王苗, 沈祥, 王国祥, 戴世勋, 宋志棠

Effect of Cu on the structure and phase-change characteristics of Sb2Te film for high-speed phase change random access memory

Wang Dong-Min, Lü Ye-Gang, Song san-Nian, Wang Miao, Shen Xiang, Wang Guo-Xiang, Dai Shi-Xun, Song Zhi-Tang
PDF
导出引用
  • 采用原位X射线衍射仪、拉曼光谱仪和X射线反射仪分别研究了Cu-Sb2Te 薄膜的微结构、成键结构和结晶前后的密度变化. Sb2Te薄膜的结晶温度随着Cu含量的增加而增大. 在10 at.%和14 at.% Cu的Sb2Te薄膜中, Cu与 Te 成键, 结晶相由六方相的Cu7Te4、菱形相的Sb及六方相的Sb2Te构成. 10 at.% 和14 at.% Cu 的Sb2Te薄膜在结晶前后的厚度变化分别约为3.2%和 4.0%, 均小于传统的Ge2Sb2Te5 (GST)薄膜. 制备了基于Cu-Sb2Te薄膜的相变存储单元, 并测试了其器件性能. Cu-Sb2Te器件均能在10 ns的电脉冲下实现可逆SET-RESET操作. SET和RESET操作电压随着Cu含量的增加而减小. 疲劳测试结果显示, Cu 含量为10 at.%和14 at.%的PCRAM单元的循环操作次数分别达到1.3×104和1.5×105, RESET和SET态的电阻比值约为100. Cu-Sb2Te可以作为应用于高速相变存储器(PCRAM)的候选材料.
    In this paper, in-situ X-ray diffratometer, Raman spectrometer, and X-ray reflectometer are employed to study the crystal structure, bonding states, and density change upon crystallization of Cu-Sb2Te films. It is shown that the crystallization temperature increases with increasing Cu content due to much more energy being required to overcome the rigid atomic network for the atoms rearrangement as a result of the complex branching and cross links. In X-ray diffraction pattern, both hexagonal Cu7Te4 and Sb2Te peaks have nearly the same peak positions, while the rhombohedral Sb peaks shift obviously their positions toward a small angle upon heating, suggesting a significant increase in lattice parameters of Sb phase. A Cu-Te bond is formed in Sb2Te films containing 10 at% and 14 at% Cu which are crystalized into hexagonal Cu7Te4, rhombohedral Sb and hexagonal Sb2Te three phases. When Cu concentration increases to 19 at%, Cu-Te bond becomes full, and the excess of Cu will bond with Sb. Compared with Ge2Sb2Te5 (GST), Sb2Te films with 10 at% and 14 at% Cu have lower density changes upon crystallization which are about 3.2% and 4.0%, respectively. Phase change random access memory (PCRAM) based on Cu-Sb2Te is successfully fabricated and characterized. Operations of set-reset can be realized in a 10 ns pulse for Cu-Sb2Te based PCRAM. The value of set and reset operation voltage decreases with increasing Cu content. The endurance test shows that the operation cycle numbers can reach 1.3×104 and 1.5×105 for the 10 at% and 14 at% Cu-based PCRAMs, respectively. The resistance ratio of reset and set states maintains a balance of about 100. Cu-Sb2Te film may be considered as one of the promising candidates for high-speed PCRAM.
    • 基金项目: 国家自然科学基金(批准号: 61306147, 61377061)、宁波市自然科学基金(批准号: 2014A610121)和宁波大学王宽城幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 306147, 61377061), Ningbo Municipal Natural Science Foundation, China (Grant No. 2014A610121), and Sponsored by K. C. Wong Magna Fund in Ningbo University.
    [1]

    Bez R, Pirovano A 2004 Mater. Sci. Semicond. Process 7 349

    [2]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [3]

    Wong H S P, Raoux S, Kim S, Liang J L, Reifenberg J P, Rajendran B, Asheghi M, Goodson K E 2010 Proc. IEEE 98 2201

    [4]

    Ielmini D, Mantegazza D, Lacaita A L, Pirovano A, Pellizzer F 2005 Solid-State Electron. 49 1826

    [5]

    Lacaita A L 2006 Solid-State Electron. 50 24

    [6]

    Simpson R E, Krbal M, Fons P, Kolobov A V, Tominaga J, Uruga T, Tanida H 2010 Nano. Lett. 10 414

    [7]

    Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L A, Padilla A, Rajendran B, Raoux S, Shenoy R S 2010 J. Vac. Sci. Technol. B 28 223

    [8]

    Lv H, Zhou P, Lin Y, Tang T, Qiao B, Lai Y, Feng J, Cai B, Chen B 2006 Microelectron. J. 37 982

    [9]

    Qiao B, Feng J, Lai Y, Ling Y, Lin Y, Tang T, Cai B, Chen B 2006 Appl. Surf. Sci. 252 8404

    [10]

    Lu Y, Song S, Gong Y, Song Z, Rao F, Wu L, Liu B, Yao D 2011 Appl. Phys. Lett. 99 243111

    [11]

    van Pieterson L, Lankhorst M H R, van Schijndel M, Kuiper A E T, Roosen J H J 2005 J. Appl. Phys. 97 083520

    [12]

    Tomas Wagnera1 J G, Jiri Oravaa3, Jan Prikryla4, Petr Bezdickaa5, Miroslav Bartosa6, Milan Vlceka7 and Miloslav Frumara8 2008 MRS Proceedings 1072

    [13]

    Wang F, Zhang T, Song Z, Liu C, Wu L, Liu B, Feng S, Chen B 2008 Jpn. J. Appl. Phys. 47 843

    [14]

    Rao F, Ren K, Gu Y, Song Z, Wu L, Zhou X, Liu B, Feng S, Chen B 2011 Thin Solid Films 519 5684

    [15]

    Kao K F, Lee C M, Chen M J, Tsai M J, Chin T S 2009 Adv. Mater. 21 1695

    [16]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R W 2012 Appl. Phys. Lett. 100 072101

    [17]

    Lu Y, Song S, Song Z, Rao F, Wu L, Zhu M, Liu B, Yao D 2012 Appl. Phys. Lett. 100 193114

    [18]

    Lee C M, Lin Y I, Chin T S 2004 J. Mater. Res. 19 2929

    [19]

    Yi-Ming C, Kuo P C 1998 IEEE Trans. Magn. 34 432

    [20]

    Zhang J, Tang Y, Wu W 2007 High Power Laser and Particle Beams 19 1317

    [21]

    Njoroge W K, Woltgens H-W, Wuttig M 2002 J. Vac. Sci. Technol. A 20 230

    [22]

    Leamy H J 1981 Appl. Phys. Lett. 38 137

    [23]

    Kaiser N 1984 Thin Solid Films 116 259

    [24]

    Simpson R E, Fons P, Kolobov A V, Krbal M, Tominaga J 2012 Appl. Phys. Lett. 100 021911.

  • [1]

    Bez R, Pirovano A 2004 Mater. Sci. Semicond. Process 7 349

    [2]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [3]

    Wong H S P, Raoux S, Kim S, Liang J L, Reifenberg J P, Rajendran B, Asheghi M, Goodson K E 2010 Proc. IEEE 98 2201

    [4]

    Ielmini D, Mantegazza D, Lacaita A L, Pirovano A, Pellizzer F 2005 Solid-State Electron. 49 1826

    [5]

    Lacaita A L 2006 Solid-State Electron. 50 24

    [6]

    Simpson R E, Krbal M, Fons P, Kolobov A V, Tominaga J, Uruga T, Tanida H 2010 Nano. Lett. 10 414

    [7]

    Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L A, Padilla A, Rajendran B, Raoux S, Shenoy R S 2010 J. Vac. Sci. Technol. B 28 223

    [8]

    Lv H, Zhou P, Lin Y, Tang T, Qiao B, Lai Y, Feng J, Cai B, Chen B 2006 Microelectron. J. 37 982

    [9]

    Qiao B, Feng J, Lai Y, Ling Y, Lin Y, Tang T, Cai B, Chen B 2006 Appl. Surf. Sci. 252 8404

    [10]

    Lu Y, Song S, Gong Y, Song Z, Rao F, Wu L, Liu B, Yao D 2011 Appl. Phys. Lett. 99 243111

    [11]

    van Pieterson L, Lankhorst M H R, van Schijndel M, Kuiper A E T, Roosen J H J 2005 J. Appl. Phys. 97 083520

    [12]

    Tomas Wagnera1 J G, Jiri Oravaa3, Jan Prikryla4, Petr Bezdickaa5, Miroslav Bartosa6, Milan Vlceka7 and Miloslav Frumara8 2008 MRS Proceedings 1072

    [13]

    Wang F, Zhang T, Song Z, Liu C, Wu L, Liu B, Feng S, Chen B 2008 Jpn. J. Appl. Phys. 47 843

    [14]

    Rao F, Ren K, Gu Y, Song Z, Wu L, Zhou X, Liu B, Feng S, Chen B 2011 Thin Solid Films 519 5684

    [15]

    Kao K F, Lee C M, Chen M J, Tsai M J, Chin T S 2009 Adv. Mater. 21 1695

    [16]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R W 2012 Appl. Phys. Lett. 100 072101

    [17]

    Lu Y, Song S, Song Z, Rao F, Wu L, Zhu M, Liu B, Yao D 2012 Appl. Phys. Lett. 100 193114

    [18]

    Lee C M, Lin Y I, Chin T S 2004 J. Mater. Res. 19 2929

    [19]

    Yi-Ming C, Kuo P C 1998 IEEE Trans. Magn. 34 432

    [20]

    Zhang J, Tang Y, Wu W 2007 High Power Laser and Particle Beams 19 1317

    [21]

    Njoroge W K, Woltgens H-W, Wuttig M 2002 J. Vac. Sci. Technol. A 20 230

    [22]

    Leamy H J 1981 Appl. Phys. Lett. 38 137

    [23]

    Kaiser N 1984 Thin Solid Films 116 259

    [24]

    Simpson R E, Fons P, Kolobov A V, Krbal M, Tominaga J 2012 Appl. Phys. Lett. 100 021911.

  • [1] 何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣. 介孔尺度及结构对混合硝酸盐热输运特性的影响.  , 2022, 71(3): 030503. doi: 10.7498/aps.71.20211276
    [2] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究.  , 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [3] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究.  , 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [4] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性.  , 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [5] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用.  , 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [6] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [7] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [8] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质.  , 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [9] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究.  , 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [10] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响.  , 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [11] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响.  , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数.  , 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [13] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响.  , 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [14] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [15] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析.  , 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [16] 张祖发, 张 胤, 冯 洁, 蔡燕飞, 林殷茵, 蔡炳初, 汤庭鳌, Bomy Chen. 基于Si掺杂Sb2Te3薄膜的相变存储器研究.  , 2007, 56(7): 4224-4228. doi: 10.7498/aps.56.4224
    [17] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能.  , 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [18] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响.  , 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [19] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究.  , 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [20] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究.  , 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
计量
  • 文章访问数:  5472
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-06
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map