搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低频振荡电位的能量和相位稳定性与偶极子电流活动相关性的仿真

葛曼玲 魏孟佳 师鹏飞 陈营 付晓璇 郭宝强 张惠娟

引用本文:
Citation:

低频振荡电位的能量和相位稳定性与偶极子电流活动相关性的仿真

葛曼玲, 魏孟佳, 师鹏飞, 陈营, 付晓璇, 郭宝强, 张惠娟

Simulation on relationship between power/phase stability of low frequency oscillatory potentials and activity of dipole current

Ge Man-Ling, Wei Meng-Jia, Shi Peng-Fei, Chen Ying, Fu Xiao-Xuan, Guo Bao-Qiang, Zhang Hui-Juan
PDF
导出引用
  • 能量和相位是分析脑节律的重要物理量, 虽有许多研究, 但其与脑组织电特性和脑节律源的关系尚不完全清楚, 弄清这一问题有助于脑电测量及脑功能和疾病的分析. 为此, 借鉴脑电正问题研究方法, 大脑可看作均匀球, 脑组织电特性用导体各向同性和各向异性电导率来表示, 脑节律源用准静态偶极子电流来模拟, 其活动表达为较低频率的正弦振荡, 在改变该活动的振幅和相位时程时, 用球表面剖分网格的振荡电位仿真脑节律, 提取节律的能量和相位, 计算源和节律的窄带相位稳定性. 结果表明: 仿真节律的能量随电导率增大而减小, 受网格位置、电导率各向异性、偶极子电流幅值和偏心位置影响较大; 但仿真节律的相位稳定性只与自身的相位时程有关. 说明能量与相位稳定性电学意义无交集, 同时用来分析脑节律可提供更多神经信息; 能量的电学意义更复杂, 取决于包括测量条件在内的多种因素; 相位稳定性的优势在于它仅与脑节律相位时程直接相关, 可预测的是脑的非线性导致的相位时程越离散, 则相位稳定性越差.
    The physical parameters, e.g. power and phase, are usually employed in the neural analysis of brain rhythms, which are important in brain function and disease diagnosis. Though there has been extensive work, how both parameters are related to the electrical properties of brain tissue and the sources of brain rhythms has not been fully understood. To address the issue, a simulation is done based on the theory of dipole current. When referring to the solution to the forward problem in electroencephalograph, the brain is regarded as a homogenous sphere model, the electrical features of brain tissue are described by an isotropic electrical conductivity. The source of brain rhythms is simulated by the quasi-static dipole current whose activity is described as a sine oscillation at low frequency. The electrical field generated by the dipole current is considered to be quasi-static. By changing the amplitude and the phase time course of oscillatory dipole current, the distribution of potentials produced by the dipole current at a time-point could be calculated by applying the finite element method to the sphere model. Over a time period of sine oscillation, the oscillatory potentials regarded as the brain rhythms could be produced. Instantaneous power and phase of simulated rhythms are estimated by Hilbert transform, and then a method of phase stability in narrow-band is developed for a single oscillator. To highlight this method, three manners are employed to describe it, i.e., mean relative phase value termed phase preserved index, histogram on rose plane, and phase sorting with the help of EEGLAB. Finally the relationship between two physical parameters and the electrical features of brain tissue/the source activity of brain rhythms is investigated under the conditions of (an) isotropy of conductivity, linear or nonlinear phase dynamics and amplitude, eccentricity of dipole current, etc. The statistical methods of t-test and bootstrapping technology are performed respectively to show the significance of power and phase stability. It is obtained that the power of simulated rhythms decreases with the increase of electrical conductivity, and it is not only proportional to the square of the amplitude of dipole current, but also correlated with the anisotropy of conductivity and the locations of dipole current as well as meshes on the sphere model, however no relevance to other factors. On the contrary, the phase stability of simulated rhythms is correlated only with the non-linear time course of their own phase dynamics. The results imply that the power of brain rhythms is related to many factors such as brain tissue and amplitude of rhythm generator as well as placements of recording electrodes, but the phase stability is related only to the non-linear phase dynamics of brain rhythms. Thus, the electrical significance of the power is more complicated than that of the phase stability. This work might be helpful for understanding in depth the significance of both physical parameters from the perspective of electricity. The narrow-band phase stability of simulated rhythms could highlight the non-linear phase dynamics. It is hypothesized that the phase stability could not only map the synchrony in the neural activity as a custom means of phase coherence, but also reflect directly the non-linearity in phase dynamics, and the more divergent the phase dynamics, the lower the phase stability is, and vice verse. Therefore it is suggested that the phase stability of brain rhythms could be related closely to the non-linear factors to affect the phase dynamics of brain rhythms, e.g., the non-linear phase dynamics of rhythm generators. It is also suggested that both parameters of power and phase stability would offer more neural information.
    • 基金项目: 河北省高等学校科学技术研究项目(批准号: ZD2014026)资助的课题.
    • Funds: Project supported by the Colleges and Universities of Hebei Province Science and Technology Research Projects, China (Grant No. ZD2014026).
    [1]

    Buzsaki G 2006 Rhythm of the Brain (New York: Oxford University Press) pp1-464

    [2]

    Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger C E, Fernandez G 2005 Hippocampus 15 890

    [3]

    Lachaux J P, Rodriguez E, Martinerie J, Varela F J 1999 Human Brain Mapping 8 194

    [4]

    Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, Bernard C 2009 J. Neurosci. 29 5402

    [5]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [6]

    Winson J 1978 Science 201 160

    [7]

    Kraskov A, Quiroga R Q, Reddy L, Fried I, Koch C 2007 J. Cogn. Neurosci. 19 479

    [8]

    Ali M O J 2006 Proc. Natl. Acad. Sci. USA 13 2948

    [9]

    Mormann F, Lehnertz K, David P, Elger C E 2000 Phys. D 144 358

    [10]

    Zhang D D, Luo Y J 2011 Adv. Psychol. Sci. 19 487 (in Chinese) [张丹丹, 罗跃嘉 2011 心理科学进展 19 487]

    [11]

    Delorme A, Makeig S 2004 J. Neurosci. Methods 134 9

    [12]

    Gramfort A, Luessi M, Larson E, Engemann D A, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen M S 2013 Neuroimage 86 446

    [13]

    Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K 2011 Comput. Intell. Neurosci. 2011 852961

    [14]

    Wiener N 1956 J. Phys. Soc. Jpn. 18 499

    [15]

    Wiener N 1957 Proc. Rudolf Virchow Med. Soc. City NY 16 109

    [16]

    Qiu J H, Li Y T, Xu K H, Yang Z, Zhang T 2008 Acta Biophys. Sin. 24 221 (in Chinese) [裘嘉恒, 李雅堂, 许坤涵, 杨卓, 张涛 2008 生物 24 221]

    [17]

    Zheng C G, Quan M N, Yang Z, Zhang T 2011 Neurosci. Lett. 490 52

    [18]

    Ge M L, Wang D H, Dong G Y, Guo B Q, Gao R G, Sun W, Zhang J J, Liu H S 2013 Experimen. Neurol. 250 136

    [19]

    Ge M L, Guo B Q, Chen X, Sun Y, Chen S H, Zheng Y, Zhang H J, Sun W 2014 Acta Physiol. Sin. 66 118 (in Chinese) [葛曼玲, 郭宝强, 陈雪, 孙英, 陈盛华, 郑颖, 张惠娟, 孙伟 2014 生理学报 66 118]

    [20]

    De Munck J C, van Dijk B W, Spekreijse H 1988 IEEE Trans. Biomed. Eng. 35 960

    [21]

    da Silva F L, van Rotterdam A 1982 Biophysical Aspects of EEG, MEG Generation, 15 In: Niedermeyer E, da Silva F L eds. Electroencephalography: Basic Principles, Clinical Applications and Related Fields (Baltimore MD: Lippincott Williams & Wilkins) pp1-1156

    [22]

    Yao D Z 1998 Chin. J. Biomed. Engineer. 17 97 (in Chinese) [尧德中 1998 中国生物医学工程学报 17 97]

    [23]

    Zhu H Y, Li J, Luo B 2002 Acta Phys. Sin. 51 2393 (in Chinese) [朱红毅, 李军, 罗斌 2002 51 2393]

    [24]

    Wu C Q, Zhao S 2007 Acta Phys. Sin. 56 5180 (in Chinese) [吴重庆, 赵爽 2007 56 5180]

    [25]

    Wan B K, Xue Z J, Cheng L L, Zhu X 2006 Prog. Nat. Sci. 16 881 (in Chinese) [万柏坤, 薛召军, 程龙龙, 朱欣 2006 自然科学进展 16 881]

    [26]

    Li J, Wang K, Liu J, Zhu S A, He B 2007 Chin. J. Sens. Actuat. 20 1736 (in Chinese) [李璟, 王琨, 刘君, 朱善安, He Bin 2007 传感技术学报 20 1736]

    [27]

    Kim S, Kim T S, Zhou Y, Singh M 2003 IEEE Trans. Nucl. Sci. 50 133

    [28]

    Gulrajani R M 1998 Bioelectricity and Biomagnetism (New York: John Wiley and Sons Inc) pp1-744

    [29]

    Chen C, Li D G, Jiang Z G, Liu H B 2012 Acta Phys. Sin. 61 244101 (in Chinese) [陈聪, 李定国, 蒋治国, 刘华波 2012 61 244101]

    [30]

    Haueisen J, Tuch D S, Ramon C, Schimpf P H, Wedeen V J, George J S, Belliveau J W 2002 Neuroimage 15 159

    [31]

    Zhang Y C, Ding L, Drongelen W V, Hecox K, Frim D M, He B 2006 Neuroimage 31 1513

    [32]

    Nunez P L, Srinivasan R, Westdorp A F, Wijesinghe R S, Tucker D M, Silberstein R B, Cadusch P J 1997 Electroencephalogr. Clin. Neurophysiol. 103 499

    [33]

    Wolters C H, Anwander A, Tricoche X, Weinstein D, Koch M A, MacLeod R S 2006 Neuroimage 30 813

    [34]

    Li J, Yan D D 2009 J. China Jiliang Univ. 20 180 (in Chinese) [李璟, 闫丹丹 2009 中国计量学院学报 20 180 ]

    [35]

    Tuch D S, Wedeen V J, Dale A M, George J S, Belliveau J W 2001 Proc. Natl. Acad. Sci. USA 98 11697

    [36]

    Yan Y, Nunez P L, Hart R T 1991 Med. Biol. Eng. Comput. 29 475

    [37]

    McAdams E T, Jossinet J 1995 Physiol. Meas. 16 A1

    [38]

    Ma X S, Zhang J S, Wang P 1995 Fundamentals of Electromagnetic Fields (Beijing: Tsinghua University Press) pp1-352 (in Chinese) [马信山, 张济世, 王平 1995 电磁场基础 (北京: 清华大学出版社) 第1-352页]

    [39]

    Brody D A, Terry F H, Ideker R E 1973 IEEE Trans. Biomed. Eng. 20 141

    [40]

    Yao D Z 2003 Electricity Theory and Methods of Bran Function Detection (Beijing: Science Press) pp1-336 (in Chinese) [尧德中 2003 脑功能探测的电学理论与方法 (北京: 科学出版社) 第1-336页]

    [41]

    Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804

    [42]

    Mormanna F, Kreuz T, Andrzejak R G, David P, Lehnertz K, Elger C E 2003 Epilepsy Res. 53 173

    [43]

    Krusienski D J 2012 Brain Res. Bull. 87 130

    [44]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mech. 62 1

    [45]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [46]

    Wang X J 2010 Physiol. Rev. 90 1195

    [47]

    Fujisaka H, Yamada T 1983 Prog. Theor. Phys. 69 32

    [48]

    Abascal J F, Arridge S R, Atkinson D, Horesh R, Fabrizi L, de Lucia M, Horesh L, Bayford R H, Holder D S 2008 Neuroimage 43 258

  • [1]

    Buzsaki G 2006 Rhythm of the Brain (New York: Oxford University Press) pp1-464

    [2]

    Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger C E, Fernandez G 2005 Hippocampus 15 890

    [3]

    Lachaux J P, Rodriguez E, Martinerie J, Varela F J 1999 Human Brain Mapping 8 194

    [4]

    Chauviere L, Rafrafi N, Thinus-Blanc C, Bartolomei F, Esclapez M, Bernard C 2009 J. Neurosci. 29 5402

    [5]

    Uhlhaas P J, Singer W 2006 Neuron 52 155

    [6]

    Winson J 1978 Science 201 160

    [7]

    Kraskov A, Quiroga R Q, Reddy L, Fried I, Koch C 2007 J. Cogn. Neurosci. 19 479

    [8]

    Ali M O J 2006 Proc. Natl. Acad. Sci. USA 13 2948

    [9]

    Mormann F, Lehnertz K, David P, Elger C E 2000 Phys. D 144 358

    [10]

    Zhang D D, Luo Y J 2011 Adv. Psychol. Sci. 19 487 (in Chinese) [张丹丹, 罗跃嘉 2011 心理科学进展 19 487]

    [11]

    Delorme A, Makeig S 2004 J. Neurosci. Methods 134 9

    [12]

    Gramfort A, Luessi M, Larson E, Engemann D A, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen M S 2013 Neuroimage 86 446

    [13]

    Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K 2011 Comput. Intell. Neurosci. 2011 852961

    [14]

    Wiener N 1956 J. Phys. Soc. Jpn. 18 499

    [15]

    Wiener N 1957 Proc. Rudolf Virchow Med. Soc. City NY 16 109

    [16]

    Qiu J H, Li Y T, Xu K H, Yang Z, Zhang T 2008 Acta Biophys. Sin. 24 221 (in Chinese) [裘嘉恒, 李雅堂, 许坤涵, 杨卓, 张涛 2008 生物 24 221]

    [17]

    Zheng C G, Quan M N, Yang Z, Zhang T 2011 Neurosci. Lett. 490 52

    [18]

    Ge M L, Wang D H, Dong G Y, Guo B Q, Gao R G, Sun W, Zhang J J, Liu H S 2013 Experimen. Neurol. 250 136

    [19]

    Ge M L, Guo B Q, Chen X, Sun Y, Chen S H, Zheng Y, Zhang H J, Sun W 2014 Acta Physiol. Sin. 66 118 (in Chinese) [葛曼玲, 郭宝强, 陈雪, 孙英, 陈盛华, 郑颖, 张惠娟, 孙伟 2014 生理学报 66 118]

    [20]

    De Munck J C, van Dijk B W, Spekreijse H 1988 IEEE Trans. Biomed. Eng. 35 960

    [21]

    da Silva F L, van Rotterdam A 1982 Biophysical Aspects of EEG, MEG Generation, 15 In: Niedermeyer E, da Silva F L eds. Electroencephalography: Basic Principles, Clinical Applications and Related Fields (Baltimore MD: Lippincott Williams & Wilkins) pp1-1156

    [22]

    Yao D Z 1998 Chin. J. Biomed. Engineer. 17 97 (in Chinese) [尧德中 1998 中国生物医学工程学报 17 97]

    [23]

    Zhu H Y, Li J, Luo B 2002 Acta Phys. Sin. 51 2393 (in Chinese) [朱红毅, 李军, 罗斌 2002 51 2393]

    [24]

    Wu C Q, Zhao S 2007 Acta Phys. Sin. 56 5180 (in Chinese) [吴重庆, 赵爽 2007 56 5180]

    [25]

    Wan B K, Xue Z J, Cheng L L, Zhu X 2006 Prog. Nat. Sci. 16 881 (in Chinese) [万柏坤, 薛召军, 程龙龙, 朱欣 2006 自然科学进展 16 881]

    [26]

    Li J, Wang K, Liu J, Zhu S A, He B 2007 Chin. J. Sens. Actuat. 20 1736 (in Chinese) [李璟, 王琨, 刘君, 朱善安, He Bin 2007 传感技术学报 20 1736]

    [27]

    Kim S, Kim T S, Zhou Y, Singh M 2003 IEEE Trans. Nucl. Sci. 50 133

    [28]

    Gulrajani R M 1998 Bioelectricity and Biomagnetism (New York: John Wiley and Sons Inc) pp1-744

    [29]

    Chen C, Li D G, Jiang Z G, Liu H B 2012 Acta Phys. Sin. 61 244101 (in Chinese) [陈聪, 李定国, 蒋治国, 刘华波 2012 61 244101]

    [30]

    Haueisen J, Tuch D S, Ramon C, Schimpf P H, Wedeen V J, George J S, Belliveau J W 2002 Neuroimage 15 159

    [31]

    Zhang Y C, Ding L, Drongelen W V, Hecox K, Frim D M, He B 2006 Neuroimage 31 1513

    [32]

    Nunez P L, Srinivasan R, Westdorp A F, Wijesinghe R S, Tucker D M, Silberstein R B, Cadusch P J 1997 Electroencephalogr. Clin. Neurophysiol. 103 499

    [33]

    Wolters C H, Anwander A, Tricoche X, Weinstein D, Koch M A, MacLeod R S 2006 Neuroimage 30 813

    [34]

    Li J, Yan D D 2009 J. China Jiliang Univ. 20 180 (in Chinese) [李璟, 闫丹丹 2009 中国计量学院学报 20 180 ]

    [35]

    Tuch D S, Wedeen V J, Dale A M, George J S, Belliveau J W 2001 Proc. Natl. Acad. Sci. USA 98 11697

    [36]

    Yan Y, Nunez P L, Hart R T 1991 Med. Biol. Eng. Comput. 29 475

    [37]

    McAdams E T, Jossinet J 1995 Physiol. Meas. 16 A1

    [38]

    Ma X S, Zhang J S, Wang P 1995 Fundamentals of Electromagnetic Fields (Beijing: Tsinghua University Press) pp1-352 (in Chinese) [马信山, 张济世, 王平 1995 电磁场基础 (北京: 清华大学出版社) 第1-352页]

    [39]

    Brody D A, Terry F H, Ideker R E 1973 IEEE Trans. Biomed. Eng. 20 141

    [40]

    Yao D Z 2003 Electricity Theory and Methods of Bran Function Detection (Beijing: Science Press) pp1-336 (in Chinese) [尧德中 2003 脑功能探测的电学理论与方法 (北京: 科学出版社) 第1-336页]

    [41]

    Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804

    [42]

    Mormanna F, Kreuz T, Andrzejak R G, David P, Lehnertz K, Elger C E 2003 Epilepsy Res. 53 173

    [43]

    Krusienski D J 2012 Brain Res. Bull. 87 130

    [44]

    Sih G C, Tang K K 2012 Theor. Appl. Fract. Mech. 62 1

    [45]

    Schnitzler A, Gross J 2005 Nat. Rev. Neurosci. 6 285

    [46]

    Wang X J 2010 Physiol. Rev. 90 1195

    [47]

    Fujisaka H, Yamada T 1983 Prog. Theor. Phys. 69 32

    [48]

    Abascal J F, Arridge S R, Atkinson D, Horesh R, Fabrizi L, de Lucia M, Horesh L, Bayford R H, Holder D S 2008 Neuroimage 43 258

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性.  , 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究.  , 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [4] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [5] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [6] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征.  , 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [7] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究.  , 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [8] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质.  , 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [9] 王浩, 刘国权, 栾军华. 凸形晶粒的各向异性三维von Neumann方程研究.  , 2012, 61(4): 048102. doi: 10.7498/aps.61.048102
    [10] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性.  , 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究.  , 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [12] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究.  , 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [13] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究.  , 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析.  , 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法.  , 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子.  , 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量.  , 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [18] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究.  , 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [19] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [20] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体.  , 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
计量
  • 文章访问数:  5240
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-03-11
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map