搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

匀强磁场对水中气泡运动的影响

莫润阳 吴临燕 詹思楠 张引红

引用本文:
Citation:

匀强磁场对水中气泡运动的影响

莫润阳, 吴临燕, 詹思楠, 张引红

Effect of magnetic field on single-bubble in water

Mo Run-Yang, Wu Lin-Yan, Zhan Si-Nan, Zhang Yin-Hong
PDF
导出引用
  • 基于Rayleigh-Plesset方程, 考虑极性水分子在均匀磁场运动受到磁场力作用, 根据能量守恒建立了外磁场作用下单气泡运动的控制方程, 并对附加压强的大小、性质及对气泡运动的影响进行了计算和分析. 结果表明: 随磁场强度的增强, 附加压强线性增大, 气泡膨胀率降低, 最大半径减小, 气泡坍缩速度下降; 外加磁场引起的气泡振动变化规律与增大静态压具有相似的效果.
    In this paper, we extend the Rayleigh-Plesset model by considering the effect of a magnetic field on the nonlinear response of an oscillating spherical air bubble in water. Water molecules in motion, derived by a time varying ultrasound pressure field, suffer a torque from the magnetic field by Lorentz force. The rotational energy and the translational energy together constitute the kinetic energy of the water molecule. The work done by the pressure during the contraction and expansion of bubble is equal to the total kinetic energy of the water molecule in liquid. According to energy conservation, we establish a modified control equation of the bubble motion under the action of an applied external magnetic field. The integration of the nonlinear differential equation governing the bubble motion is performed analytically by using a regular expansion, and is solved numerically by using a fourth-order Runge-Kutta method. It is shown that the variation of ambient pressure changes the bubble dynamics when the magnetic field is off. The ambient pressure is increased due to the effect of external magnetic field. The pressure induced by magnetic field increases linearly with the increase of magnetic field intensity and the coefficient is about 103 times. The bubble expansion rate, maximum radius, and the velocity of the collapsing bubble decrease as the magnetic field increases. It is predicted that the applying of a magnetic field can widen the pressure range and modify bubble dynamics.
    • 基金项目: 国家自然科学基金(批准号:11274216)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274216).
    [1]

    Oh J M, Kim P J, Kang I S 2001 Phys. Fluids 13 2820

    [2]

    Dong W, Li R Y, Yu H L, Huang X 2004 J. Eng. Thermophys. 25 439 (in Chinese) [董伟, 李瑞阳, 郁鸿凌, 黄煊 2004 工程热 25 439]

    [3]

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 124301 (in Chinese) [沈壮志, 吴胜举 2012 61 124301]

    [4]

    Shalnev K K, Shalobasov I A 1970 Trans. IAHR Symposium Paper H1

    [5]

    Shalobasov I A, Shalnev K K 1971 Heat Transfer-Soviet Research 3 141

    [6]

    Hammitt F G 1974 Report No. UMICH 01357-30-I

    [7]

    Young J B, Schmiedel T, Kang W 1996 Phys. Rev. Lett. 77 4816

    [8]

    Yasui K 1999 Phys. Rev. E 60 1759

    [9]

    Ding C F, Xing D 2004 Sci. China: Phys. Mech. Astron. 34 257 (in Chinese) [丁春峰, 邢达 2004 中国科学: 物理学 力学 天文学 34 257]

    [10]

    Li C H, An Y 2009 Sci. China: Phys. Mech. Astron. 52 593

    [11]

    Leighton T G 1994 The Acoustic Bubble (London: Academic Press) p85

    [12]

    Kondic L, Yuan C, Chan C K 1998 Phys. Rev. E 57 R32

    [13]

    Liu H J, An Y 2004 Acta Phys. Sin. 53 1406 (in Chinese) [刘海军, 安宇 2004 53 1406]

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 52 620]

    [15]

    Chen W Z, Huang W, Liu Y N, Gao X X 2006 Sci China: Phys. Mech. Astron. 36 113 (in Chinese) [陈伟中, 黄威, 刘亚楠, 高贤娴 2006 中国科学: 物理学 力学 天文学 36 113]

    [16]

    Chen W Z, Wei R J, Wang B R 1996 Acta Phys. Sin. (Oversea Ed.) 5 620

    [17]

    Toegel R, Lohse D 2003 J. Chem. Phys. 118 1863

    [18]

    Matula T J, Crum L A 1998 Phys. Rev. Lett. 80 865

  • [1]

    Oh J M, Kim P J, Kang I S 2001 Phys. Fluids 13 2820

    [2]

    Dong W, Li R Y, Yu H L, Huang X 2004 J. Eng. Thermophys. 25 439 (in Chinese) [董伟, 李瑞阳, 郁鸿凌, 黄煊 2004 工程热 25 439]

    [3]

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 124301 (in Chinese) [沈壮志, 吴胜举 2012 61 124301]

    [4]

    Shalnev K K, Shalobasov I A 1970 Trans. IAHR Symposium Paper H1

    [5]

    Shalobasov I A, Shalnev K K 1971 Heat Transfer-Soviet Research 3 141

    [6]

    Hammitt F G 1974 Report No. UMICH 01357-30-I

    [7]

    Young J B, Schmiedel T, Kang W 1996 Phys. Rev. Lett. 77 4816

    [8]

    Yasui K 1999 Phys. Rev. E 60 1759

    [9]

    Ding C F, Xing D 2004 Sci. China: Phys. Mech. Astron. 34 257 (in Chinese) [丁春峰, 邢达 2004 中国科学: 物理学 力学 天文学 34 257]

    [10]

    Li C H, An Y 2009 Sci. China: Phys. Mech. Astron. 52 593

    [11]

    Leighton T G 1994 The Acoustic Bubble (London: Academic Press) p85

    [12]

    Kondic L, Yuan C, Chan C K 1998 Phys. Rev. E 57 R32

    [13]

    Liu H J, An Y 2004 Acta Phys. Sin. 53 1406 (in Chinese) [刘海军, 安宇 2004 53 1406]

    [14]

    Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese) [刘海军, 安宇 2003 52 620]

    [15]

    Chen W Z, Huang W, Liu Y N, Gao X X 2006 Sci China: Phys. Mech. Astron. 36 113 (in Chinese) [陈伟中, 黄威, 刘亚楠, 高贤娴 2006 中国科学: 物理学 力学 天文学 36 113]

    [16]

    Chen W Z, Wei R J, Wang B R 1996 Acta Phys. Sin. (Oversea Ed.) 5 620

    [17]

    Toegel R, Lohse D 2003 J. Chem. Phys. 118 1863

    [18]

    Matula T J, Crum L A 1998 Phys. Rev. Lett. 80 865

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析.  , 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [3] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟.  , 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [4] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析.  , 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [5] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强.  , 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [6] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [7] 张天成, 成爱强, 包华广, 丁大志. 静态强磁场对临近空间飞行器中天线辐射性能的影响.  , 2022, 71(8): 085202. doi: 10.7498/aps.71.20212044
    [8] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析.  , 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [9] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性.  , 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [10] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响.  , 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [11] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究.  , 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [12] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应.  , 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [13] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性.  , 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [14] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性.  , 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [15] 卢义刚, 吴雄慧. 双泡超声空化计算分析.  , 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [16] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究.  , 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [17] 蔡建臻, 朱宏伟, 吴德海, 刘 峰, 吕 力. 单壁碳纳米管微分电导在高压和强磁场下的实验研究.  , 2006, 55(12): 6585-6588. doi: 10.7498/aps.55.6585
    [18] 刘海军, 安宇. 空化单气泡外围压强分布.  , 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
    [19] 饶建国, 习金华, 李白文. 强磁场中氢原子自离化态的能级及宽度.  , 1995, 44(12): 1886-1893. doi: 10.7498/aps.44.1886
    [20] 霍素国, 聂向富, 韩宝善. 面内场和静态偏磁场作用下条畴和泡畴的稳定性.  , 1991, 40(12): 2012-2017. doi: 10.7498/aps.40.2012
计量
  • 文章访问数:  7977
  • PDF下载量:  4040
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-12-17
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map