-
开关变换器的脉冲序列控制是通过调整控制脉冲循环周期内高、低功率脉冲的组合方式实现对开关变换器输出电压的调节. 控制脉冲循环周期内高、低功率脉冲的组合方式决定了脉冲序列控制开关变换器的稳态性能. 基于数论中连分式展开的思想, 研究了控制脉冲循环周期内脉冲序列控制开关变换器的控制脉冲组合规律, 得到了确定控制脉冲循环周期内高、低功率控制脉冲组合方式的算法. 建立了脉冲序列控制开关变换器的输出电压一维离散迭代标准模型, 并结合高、低功率控制脉冲组合规律, 分析了脉冲序列控制开关变换器的稳态性能; 研究了其多周期态参数估计和分布; 得到了其输出电压纹波范围. 仿真和实验结果证明了算法的正确性. 本文的研究结果有助于深入理解脉冲序列控制这一类离散型开关变换器控制方法.Pulse train control technique is realized through the output voltage regulation of switching dc-dc converter by adjusting the control pulse combination of high-power and low-power control pulses in a control pulse repetition cycle. Once the circuit parameters are determined, the control pulse combination is fixed. The control pulse combination directly affects the steady-state performances of pulse train (PT) controller. In this paper, the control pulse combination of PT control technique is studied by using the continued fraction technique. A one-dimensional normal form of discrete-time map of PT controlled buck converter operating in discontinuous conduction mode is also established in which the steady state performances, such as parameter evaluation of multi-periodicities and output voltage ripple of PT controlled DCM buck converter, are analyzed. The simulation result, experimental result, and the results in the literature are in accordance with the theoretical analysis. This investigation is helpful to obtain a deeper understanding of PT control technique.
-
Keywords:
- pulse train /
- control pulse combination /
- output voltage ripple
[1] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 3
[2] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. Syst. 41 1
[3] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 4
[4] Khaligh A, Emadi A 2006 IEEE Veh. Power Propul. Conf. (VPPC) Windsor, United kingdom, Sep, 2006 p1
[5] Khaligh A, Emadi A 2006 IEEE 1st Conf. Indust. Elect. Applic.(ICIEA) Singapore, Singapore, May, 2006 p1
[6] Khaligh A, Rahimi A M, Emadi A 2007 IEEE Trans. Veh. Technol. 56 4
[7] Qin M, Xu J P, Zhou G H, Mu Q B 2009 IEEE 4th Conf. Indust. Elect. Applic. (ICIEA) Xi’an, China, May, 2009 p2924
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 12 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 12]
[9] Hua L G 1975 Introduction to the Theory of Numbers (Beijing: Science Publishing House) p15 (in Chinese) [华罗庚 1975 数论导引(北京: 科学出版社) 第15页]
[10] Hincen,Alexandr Jakovlevic 1965 Continued Fraction(Shanghai: Scientific and Technical Publishers) p53 (in Chinese) [辛钦 1965 连分数(上海: 科学技术出版社) 第53页]
[11] Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 7 (in Chinese) [王发强, 马西奎 2011 60 7]
[12] Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]
[13] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 8
[14] Banerjee S, Ranjan P, Grebogi C 2000 IEEE Trans. Circuits Syst. I. 47 5
[15] Kapat S, Banerjee S, Patra A 2010 IEEE Trans. Circuits Syst. I. 57 7
[16] Wang J P, Bao B C, Xu J P, Zhou G H, Hu W 2012 IEEE Trans. Ind. Electron. 60 5
[17] Jain P, Banerjee S 2003 Int. J. Bifurcat. Chaos. 13 11
[18] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 5
[19] Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]
[20] Yang P, Xu J P, He S Z, Bao B C 2013 Acta Phys. Sin. 62 160501 (in Chinese) [杨平, 许建平, 何圣仲, 包伯成 2013 62 160501]
-
[1] Telefus M, Shteynberg A, Ferdowsi M, Emadi A 2004 IEEE Trans. Power Electron. 19 3
[2] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Aerosp. Electron. Syst. 41 1
[3] Ferdowsi M, Emadi A, Telefus M, Shteynberq A 2005 IEEE Trans. Power Electron. 20 4
[4] Khaligh A, Emadi A 2006 IEEE Veh. Power Propul. Conf. (VPPC) Windsor, United kingdom, Sep, 2006 p1
[5] Khaligh A, Emadi A 2006 IEEE 1st Conf. Indust. Elect. Applic.(ICIEA) Singapore, Singapore, May, 2006 p1
[6] Khaligh A, Rahimi A M, Emadi A 2007 IEEE Trans. Veh. Technol. 56 4
[7] Qin M, Xu J P, Zhou G H, Mu Q B 2009 IEEE 4th Conf. Indust. Elect. Applic. (ICIEA) Xi’an, China, May, 2009 p2924
[8] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 12 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 12]
[9] Hua L G 1975 Introduction to the Theory of Numbers (Beijing: Science Publishing House) p15 (in Chinese) [华罗庚 1975 数论导引(北京: 科学出版社) 第15页]
[10] Hincen,Alexandr Jakovlevic 1965 Continued Fraction(Shanghai: Scientific and Technical Publishers) p53 (in Chinese) [辛钦 1965 连分数(上海: 科学技术出版社) 第53页]
[11] Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 7 (in Chinese) [王发强, 马西奎 2011 60 7]
[12] Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401 (in Chinese) [谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401]
[13] Yang N N, Liu C X, Wu C J 2012 Chin. Phys. B 21 8
[14] Banerjee S, Ranjan P, Grebogi C 2000 IEEE Trans. Circuits Syst. I. 47 5
[15] Kapat S, Banerjee S, Patra A 2010 IEEE Trans. Circuits Syst. I. 57 7
[16] Wang J P, Bao B C, Xu J P, Zhou G H, Hu W 2012 IEEE Trans. Ind. Electron. 60 5
[17] Jain P, Banerjee S 2003 Int. J. Bifurcat. Chaos. 13 11
[18] Zhou G H, Bao B C, Xu J P, Jin Y Y 2010 Chin. Phys. B 19 5
[19] Yang P, Bao B C, Sha J, Xu J P 2013 Acta Phys. Sin. 62 010504 (in Chinese) [杨平, 包伯成, 沙金, 许建平 2013 62 010504]
[20] Yang P, Xu J P, He S Z, Bao B C 2013 Acta Phys. Sin. 62 160501 (in Chinese) [杨平, 许建平, 何圣仲, 包伯成 2013 62 160501]
计量
- 文章访问数: 5816
- PDF下载量: 390
- 被引次数: 0