-
通过采用4,4,4-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)掺入MoOx作为器件的空穴传输层来提高酞菁铜(CuPc)/C60小分子有机太阳电池的效率. 采用真空蒸镀的方法制备了一系列器件, 其中结构为铟锡氧化物(ITO)/m-MTDATA:MoOx(3:1)(30 nm)/CuPc(20 nm)/C60(40 nm)/4,7-二苯 基-1,10-菲罗啉(Bphen)(8 nm)/LiF(0.8 nm)/Al(100 nm)的器件, 在AM1.5 (100 mW/cm2)模拟太阳光的照射条件下, 开路电压Voc=0.40 V, 短路电流Jsc=6.59 mA/cm2, 填充因子为0.55, 光电转换效率达1.46%, 比没有空穴传输层的器件ITO/CuPc(20 nm)/C60(40 nm)/Bphen(8 nm)/LiF(0.8 nm)/Al(100 nm)光电转换效率提高了38%. 研究表明, 加入m-MTDATA:MoOx(3:1)(30 nm)空穴传输层减小了有机层和ITO电极之间的接触电阻, 从而减小了整个器件的串联电阻, 提高了器件的光电转换效率.MoOx doped 4,4,4-tris(N-(3-methylphenyl)-N-phenylamin) triphenylamine (m-MTDATA) is used as a hole transport layer to improve the efficiency of CuPc/C60 small molecular organic photovoltaics. A series of devices is fabricated in a high vacuum system. One of the devices with the structure of indum tin oxides (ITO)/m-MTDATA:MoOx(3:1)(30 nm)/CuPc(20 nm)/C60(40 nm)/Bphen (8 nm)/LiF(0.8 nm)/Al(100 nm) shows that the following parameters are achieved: the open circuit voltage Voc = 0.40 V, short-circuit current Jsc=6.59 mA/cm2, fill factor of 0.55, and power conversion efficiency p=1.46% under AM1.5 solar illumination. The efficiency of the device is improved by 38% compared with that of the device without hole transport layer ITO/CuPc(20 nm)/C60(40 nm)/Bphen(8 nm)/LiF(0.8 nm)/Al(100 nm). The improvement of the device performance may be attributed to the addition of m-MTDATA:MoOx (3:1) (30 nm) hole transport layer that reduces the contact resistance between the ITO electrode and the organic layer, thus reducing the overall device series resistance and improving the efficiency of the device.
-
Keywords:
- organic solar cells /
- p-type doping /
- hole transport /
- MoOx
[1] Tang C W 1986 Appl. Phys. Lett. 48 183
[2] [3] [4] Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 57 2567]
[5] [6] Xing H W, Peng Y Q, Yang Q S, Ma C Z, Wang R S, Li X S 2008 Acta Phys. Sin. 57 7374 (in Chinese) [邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓 2008 57 7374]
[7] [8] Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143
[9] Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[10] [11] [12] Peumans P, Bulovic V, Forrest S R 2000 Appl. Phys. Lett. 76 2650
[13] [14] Peumans P, Forrest S R 2001 Appl. Phys. Lett. 79 126
[15] [16] Xue J, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013
[17] [18] Chan M Y, Lai S L, Fung M K, Lee C S, Lee S T 2007 Appl. Phys. Lett. 90 023504
[19] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1
[20] [21] [22] Service R F 2011 Science 332 293
[23] Forrest S R 2005 MRS Bull. 30 28
[24] [25] [26] Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K 2001 Appl. Phys. Lett. 78 410
[27] [28] Zhou X, Qin D S, Pfeiffer M, Blochwitz-Nimoth J, Werner A, Drechsel J, Maennig B, Leo K, Bold M, Erk K, Hartmann H 2002 Appl. Phys. Lett. 81 4070
[29] Huang J, Pfeiffer M, Werner A, Blochwitz J, Liu S 2002 Appl. Phys. Lett. 80 139
[30] [31] Pfeiffer M, Forrest S R, Leo K, Thompson M E 2002 Adv. Mater. 14 1633
[32] [33] [34] Pfeiffer M, Forrest S R, Zhou X, Leo K 2003 Org. Electron. 4 21
[35] [36] Maennig B, Drechsel J, Gebeyehu D, Simon P, Kozlowski F, Werner A, Li F, Leo K 2004 Appl. Phys. A 79 1
[37] Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305
[38] [39] Wang J C, Ren X C, Shi S Q, Leung C W, Chan P K L 2011 Org. Electron. 12 880
[40] [41] Shirota Y 2000 J. Mater. Chem. 10 1
[42] [43] [44] Terao Y, Sasabe H, Adachi C 2007 Appl. Phys. Lett. 90 103515
[45] Peumans P, Yakimov A, Forrest S R 2003 J. Appl. Phys. 93 3693
-
[1] Tang C W 1986 Appl. Phys. Lett. 48 183
[2] [3] [4] Feng W, Gao Z K 2008 Acta Phys. Sin. 57 2567 (in Chinese) [封伟, 高中扩 2008 57 2567]
[5] [6] Xing H W, Peng Y Q, Yang Q S, Ma C Z, Wang R S, Li X S 2008 Acta Phys. Sin. 57 7374 (in Chinese) [邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓 2008 57 7374]
[7] [8] Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143
[9] Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602
[10] [11] [12] Peumans P, Bulovic V, Forrest S R 2000 Appl. Phys. Lett. 76 2650
[13] [14] Peumans P, Forrest S R 2001 Appl. Phys. Lett. 79 126
[15] [16] Xue J, Uchida S, Rand B P, Forrest S R 2004 Appl. Phys. Lett. 84 3013
[17] [18] Chan M Y, Lai S L, Fung M K, Lee C S, Lee S T 2007 Appl. Phys. Lett. 90 023504
[19] Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1
[20] [21] [22] Service R F 2011 Science 332 293
[23] Forrest S R 2005 MRS Bull. 30 28
[24] [25] [26] Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K 2001 Appl. Phys. Lett. 78 410
[27] [28] Zhou X, Qin D S, Pfeiffer M, Blochwitz-Nimoth J, Werner A, Drechsel J, Maennig B, Leo K, Bold M, Erk K, Hartmann H 2002 Appl. Phys. Lett. 81 4070
[29] Huang J, Pfeiffer M, Werner A, Blochwitz J, Liu S 2002 Appl. Phys. Lett. 80 139
[30] [31] Pfeiffer M, Forrest S R, Leo K, Thompson M E 2002 Adv. Mater. 14 1633
[32] [33] [34] Pfeiffer M, Forrest S R, Zhou X, Leo K 2003 Org. Electron. 4 21
[35] [36] Maennig B, Drechsel J, Gebeyehu D, Simon P, Kozlowski F, Werner A, Li F, Leo K 2004 Appl. Phys. A 79 1
[37] Xie G H, Meng Y L, Wu F M, Tao C, Zhang D D, Liu M J, Xue Q, Chen W, Zhao Y 2008 Appl. Phys. Lett. 92 093305
[38] [39] Wang J C, Ren X C, Shi S Q, Leung C W, Chan P K L 2011 Org. Electron. 12 880
[40] [41] Shirota Y 2000 J. Mater. Chem. 10 1
[42] [43] [44] Terao Y, Sasabe H, Adachi C 2007 Appl. Phys. Lett. 90 103515
[45] Peumans P, Yakimov A, Forrest S R 2003 J. Appl. Phys. 93 3693
计量
- 文章访问数: 7440
- PDF下载量: 879
- 被引次数: 0