-
用密度泛函理论,研究了Al对合金Mg1-xTix及其氢化物稳定性和电子结构的影响. 通过计算不同掺杂浓度的Mg-Ti-Al合金的形成焓,发现当Al和Ti的浓度之比为1:1时, 合金结构最稳定,有利于氢的可逆吸收;而掺杂体系的氢化物稳定性降低, 可提高放氢性能.通过对态密度,电子密度和键长的分析, 表明Al改善Mg-Ti系统的放氢性能的原因是掺杂后减少了低能级区成键态的电子以及减弱了Mg-H, Ti-H原子间的相互作用.
-
关键词:
- Mg1-xTixH2储氢材料 /
- 赝势平面波 /
- 电子结构 /
- 稳定性
Based on the density functional theory, influences of Al doping on stability and electronic structure of MgxTi1-x alloys and their hydrides were investigated. By calculating the formation energies of Mg-Ti-Al system, it is found that the best effect was obtained when the Ti-Al ratio was fixed at 1: 1, where the metal alloy was most stable, and was helpful to reversibly hydrogenate. Moreover, the partial substitution of Al for Ti atoms decreased the stability of the hydrides and improved the hydrogen storage properties. The analyses of the density of states, electron density and bond length showed that the improved properties of MgxTi1-x alloys and their hydrides with Al doping are due to the decrease in the number of bonding electrons and the weakening of Mg-H and Ti-H interactions in doped systems.-
Keywords:
- Mg1-xTixH2 /
- pseudopotential plane-wave /
- electronic structure /
- stabilization
[1] Coontz R, Hanson B 2004 Science 305 957
[2] Chen R C, Yang L, D Y Y, Zhu Z Q, Peng S M, Long X G, Gao F, Zu X T 2012 Chin. Phys. B 21 056601
[3] D Y Y, Yang L, Peng S M, Long X G, Zhou X S, Zu X T 2012 Acta Phys. Sin. 61 108801 (in Chinese) [代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛 2012 61 108801]
[4] Stampfer Jr J F, Holley Jr C E, Suttle J F 1960 J. Am. Chem. Soc. 82 3504
[5] Liang G, Huot J, Boily S, Van Neste A, Schulz R 1999 J. Alloys. Compd. 292 247
[6] Pelletier J F, Huot J, Sutton M, Schulz R, Sandy A R, Lurio L B, Mochrie S G J 2001 Phys. Rev. B 63 052103
[7] Shang C X, Bououdina M, Song Y, Guo Z X 2004 Int. J. Hydrogen Energy. 29 73
[8] Song Y, Guo Z X, Yang R 2004 Phys. Rev. B 69 094205
[9] Deng Y H, Liu J S 2011 Acta Phys. Sin. 60 11 (in Chinese) [邓永和, 刘金烁 2011 60 11]
[10] Er S, Tiwari D, de Wijs G A, Brocks G 2009 Phys. Rev. B 79 024105
[11] Er S, van Setten M J, de Wijs G A, Brocks G 2010 J. Phys.: Condens. Matter. 22 074208
[12] Vermeulen P, van Thiel E F M J, Notten P H L 2007 Chem. Eur. J. 13 9892
[13] Shelyapina M G, Fruchart D, Miraglia S, Girard G 2011 Phys. Solid State 53 6
[14] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens Matter. 14 2717
[15] Liu Z M, Cui T, Ma Y M, Liu B B, Zou G T 2007 Acta Phys. Sin. 56 8 (in Chinese) [刘志明, 崔田, 马琰铭, 刘冰冰, 邹广田 2007 56 8]
[16] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 5811 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 11]
[17] Mokhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[18] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[21] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[22] Ronnebro E, Kyoi D, Kitano Y, Sakai T 2005 Proceedings of the 9th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications Cracow, POLAND, September 05-10, 2004 p68
[23] Shelyapina M G, Fruchart D, Wolfers P 2010 Int. J. Hydrogen Energy 35 2025
[24] Nakamura H, Nguyen-Manh D, Pettifor D G 1998 J. Alloy. Compd. 281 81
[25] Kerimov K M, Dunaev S F, Sljusarenko E M 1987 J. Less-Common Met. 133 297
[26] van Mal H H, Buschow K H C, Miedema A R 1974 J. Less-Common Met. 35 65
[27] Er S, De Wijs G A, Brocks G 2009 J. Phys. Chem. C 113 8997
-
[1] Coontz R, Hanson B 2004 Science 305 957
[2] Chen R C, Yang L, D Y Y, Zhu Z Q, Peng S M, Long X G, Gao F, Zu X T 2012 Chin. Phys. B 21 056601
[3] D Y Y, Yang L, Peng S M, Long X G, Zhou X S, Zu X T 2012 Acta Phys. Sin. 61 108801 (in Chinese) [代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛 2012 61 108801]
[4] Stampfer Jr J F, Holley Jr C E, Suttle J F 1960 J. Am. Chem. Soc. 82 3504
[5] Liang G, Huot J, Boily S, Van Neste A, Schulz R 1999 J. Alloys. Compd. 292 247
[6] Pelletier J F, Huot J, Sutton M, Schulz R, Sandy A R, Lurio L B, Mochrie S G J 2001 Phys. Rev. B 63 052103
[7] Shang C X, Bououdina M, Song Y, Guo Z X 2004 Int. J. Hydrogen Energy. 29 73
[8] Song Y, Guo Z X, Yang R 2004 Phys. Rev. B 69 094205
[9] Deng Y H, Liu J S 2011 Acta Phys. Sin. 60 11 (in Chinese) [邓永和, 刘金烁 2011 60 11]
[10] Er S, Tiwari D, de Wijs G A, Brocks G 2009 Phys. Rev. B 79 024105
[11] Er S, van Setten M J, de Wijs G A, Brocks G 2010 J. Phys.: Condens. Matter. 22 074208
[12] Vermeulen P, van Thiel E F M J, Notten P H L 2007 Chem. Eur. J. 13 9892
[13] Shelyapina M G, Fruchart D, Miraglia S, Girard G 2011 Phys. Solid State 53 6
[14] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens Matter. 14 2717
[15] Liu Z M, Cui T, Ma Y M, Liu B B, Zou G T 2007 Acta Phys. Sin. 56 8 (in Chinese) [刘志明, 崔田, 马琰铭, 刘冰冰, 邹广田 2007 56 8]
[16] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 5811 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 11]
[17] Mokhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[18] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[21] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[22] Ronnebro E, Kyoi D, Kitano Y, Sakai T 2005 Proceedings of the 9th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications Cracow, POLAND, September 05-10, 2004 p68
[23] Shelyapina M G, Fruchart D, Wolfers P 2010 Int. J. Hydrogen Energy 35 2025
[24] Nakamura H, Nguyen-Manh D, Pettifor D G 1998 J. Alloy. Compd. 281 81
[25] Kerimov K M, Dunaev S F, Sljusarenko E M 1987 J. Less-Common Met. 133 297
[26] van Mal H H, Buschow K H C, Miedema A R 1974 J. Less-Common Met. 35 65
[27] Er S, De Wijs G A, Brocks G 2009 J. Phys. Chem. C 113 8997
计量
- 文章访问数: 6428
- PDF下载量: 424
- 被引次数: 0