-
采用溶胶凝胶法合成的La1.9Y0.1Mo2O9纳米晶粉体, 结合微波烧结技术制备出不同晶粒度的La1.9Y0.1Mo2O9块体样品. 利用X射线衍射仪(XRD)、高分辨透射显微镜(HRTEM)、场扫描显微镜(SEM)对粉体及陶瓷块体的物相、 形貌进行了表征, 利用交流阻抗谱仪测试了样品不同温度下的电导率. 实验结果表明, 掺Y的La1.9Y0.1Mo2O9能将高温立方β 相稳定到室温; 块体样品致密均匀, 平均晶粒度范围在60 nm–4 μm之间; 致密度高的样品表现出高的电导率, 其中900 ℃烧结样品的电导率600 ℃时高达0.026 S/cm, 比固相反应法制备的La1.9Y0.1Mo2O9样品高出约1倍. 总结认为样品的致密性对电导率影响较大, 是通过影响晶界电导率来影响总电导率的, 样品的晶粒度(在60 nm–4 μm范围内)对电导率的影响还不能确定.
-
关键词:
- 氧离子导体 /
- La1.9Y0.1Mo2O9 /
- 细晶粒陶瓷 /
- 微波烧结
A series of La1.9Y0.1Mo2O9 bulk samples of different grain sizes were made by microwave sintering the nanocrystalline powders prepared by sol-gel methods. Phases, microstructure, grain size of the powders and bulk samples were examined by using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM); and the electrical properties of the bulk samples were studied by AC impedance spectroscopy. Experimental results show that the substituent Y can stabilize the cubic β phase to room temperature; the bulk samples are dense and uniform with an average grain size from 60 nm to 4 μm; the highly dense bulk samples show enhanced ionic conduction, e.g. the conductivity of the sample with relative density 99% is 0.026 S/cm at 600 ℃, which is two times higher than that of bulk samples prepared by solid-state reaction. It can be concluded that the effect of sample density on the electrical conductivity is mainly due to the grain boundary conductivity; and the effect of sample grain size (from 60 nm to 4 μm) on the electrical properties is not so significant.[1] Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y 2000 Nature 404 856
[2] Goutenoire F, Isnard O, Retoux R, Lacorre P 2000 Chem. Mate. 12 2575
[3] Fang Q F, Wang X P, Zhang G G, Yi Z G 2003 J. Alloys Compd 355 177
[4] Wang X P, Cheng Z J, Fang Q F 2005 Solid State Ionics 176 761
[5] Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre P 2001 J. Mater. Chem. 11 119
[6] Wang X P, Fang Q F 2002 Solid State Ionics 146 185
[7] Subasri R, Matusch D, Nafe H, Aldinger F 2004 J. Eur. Ceram Soc. 24 129
[8] Basu S, Devi P S, Maiti H S 2004 Appl. Phys. Lett. 85 3486
[9] Zhang G G, Fang Q F, Wang X P, Yi Z G 2003 Phys. Stat. Sol. A 199 329
[10] Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P 2003 Solid State Ionics 161 231
[11] Georges S, Goutenoire F, Laligant Y, Lacorre P 2003 J. Mater Chem. 13 2317
[12] Georges S, Goutenoire F, Bohnke O, Steil M C, Skinner S J, Wiemhofer H D, Lacorre P 2004 J. New Mater Electrochem Syst 7 51
[13] Marozau I P, Marrero-Lopez D, Shaula A L, Kharton V V, Tsipis E V, Nunez P, Frade J R 2004 Electrochim Acta 49 3517
[14] Yang J H, Gu Z H, Wen Z Y Yan D S 2005 Solid State Ionics 176 523
[15] Wang X P, Fang Q F, Li Z S, Zhang G G. Yi Z G 2002 Appl. Phys. Lett. 81 3434
[16] Fang Q F, Wang X P, Li Z S, Zhang G G, Yi Z G 2004 Mater Sci. Eng. A 370 365
[17] Khadasheva Z S, Venskovskii N U, Safronenko M G, Mosunov A V, Politova E D, Stefanovich S Y 2002 Inorg Mater 38 1168
[18] Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603 (in Chinese) [陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 60 046603]
[19] Wang J X, Wang X P, Liang F J, Cheng Z J, Fang Q F 2006 Solid State Ionics 177 1437
[20] Subramania A, Saradha T, Muzhunathi S 2008 J. Alloys Comp. 456 234
[21] Subramania A, Saradha T, Muzhunathi S 2008 Mater. Res. Bull. 43 1153
[22] Basu S Maiti H S 2010 Ionics 16 111
[23] Tealdi C, Malavasi L, Ritter C, Flor G, Costa G 2008 J. Solid State Chem. 181 603
[24] Marrero-Lopez D, Canales-Vazquez J, Ruiz-Morales J C, Rodriguez A, Irvine J T S, Nunez P 2005 Solid State Ionics 176 1807
[25] Marrero-Lopez D, Ruiz-Morales J C, Nunez P, Abrantes J C C, Frade J R 2004 J. Solid State Chem. 177 2378
[26] Saradha T, Muzhumathi S, Subramania A 2008 J. Solid State Electrochem 12 143
[27] Yi Z G, Fang Q F, Wang X P, Zhang G G 2003 Solid State Ionics 160 117
[28] Yang J H, Wen Z Y, Gu Z H, Yan D S 2005 J. Eur. Ceram Soc. 25 3315
[29] Li Q, Xia T, Li J Y, Liu X D, Ma X F, Meng J, Cao X Q 2004 J. Rare Earth 22 102
[30] Subramania A, Saradha T, Muzhumathi S 2007 J. Power Sources 167 319
[31] Georges S, Skinner S J, Lacorre P, Steil M C 2004 Dalton T. 19 3101
[32] Goutenoire F, Retoux R, Suard E, Lacorre P 1999 J Solid State Chem. 142 228
[33] Zhang Y W, Yang Y, Jin S, Tian S T, Li G B, Jia J T, Liao C S, Yan C H 2001 Chem. Mater. 13 372
[34] Zhang Y W, Jin S, Yang Y, Li G B, Tian S J, Liao C S, Yan C H 2000 Appl. Phys. Lett. 77 3409
[35] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J, 2008 Science 321 676
[36] Jiang X N, Wang H, Ma X Y, Meng X Q, Zhang Q Y 2008 Acta Phys. Sin. 57 1851 (in Chinese) [姜雪宁, 王昊, 马小叶, 孟宪芹, 张庆瑜 2008 57 1851]
[37] Laffez P, Chen X Y, Banerjee G, Pezeril T, Rossell M D, Van Tendeloo G, Lacorre P, Liu J M, Liu Z G 2006 Thin Solid Films 500 27
[38] Zhuang Z, Wang X P, Sun A H, Li Y, Fang Q F 2008 J. Sol-Gel Sci. Technol. 48 315
[39] Zhuang Z, Wang X P, Li D, Zhang T, Fang Q F 2009 J. Am. Ceram. Soc. 92 839
[40] Zhang D M. Zhuang Z, Gao Y X, Wang X P, Fang Q F 2010 Solid State Ionics 181 1510
[41] Zhang D M, Zhuang Z, Wang X P, Gao Y X, Fang Q F 2012 J. Eu.r Ceram Soc. 32 3239
[42] Das S, Mukhopadhyay A K, Datta S, Basu D 2009 Bull Mater Sci. 32 1
[43] Luo J, Zhu H T, Liang J K 2009 Physics 38 267 (in Chinese) [骆军, 朱航天, 梁敬魁 2009 物理 38 267]
[44] Xiang J, Li L P, Su W H 2003 Acta Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 52 1474]
[45] Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 59 7447]
-
[1] Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y 2000 Nature 404 856
[2] Goutenoire F, Isnard O, Retoux R, Lacorre P 2000 Chem. Mate. 12 2575
[3] Fang Q F, Wang X P, Zhang G G, Yi Z G 2003 J. Alloys Compd 355 177
[4] Wang X P, Cheng Z J, Fang Q F 2005 Solid State Ionics 176 761
[5] Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre P 2001 J. Mater. Chem. 11 119
[6] Wang X P, Fang Q F 2002 Solid State Ionics 146 185
[7] Subasri R, Matusch D, Nafe H, Aldinger F 2004 J. Eur. Ceram Soc. 24 129
[8] Basu S, Devi P S, Maiti H S 2004 Appl. Phys. Lett. 85 3486
[9] Zhang G G, Fang Q F, Wang X P, Yi Z G 2003 Phys. Stat. Sol. A 199 329
[10] Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P 2003 Solid State Ionics 161 231
[11] Georges S, Goutenoire F, Laligant Y, Lacorre P 2003 J. Mater Chem. 13 2317
[12] Georges S, Goutenoire F, Bohnke O, Steil M C, Skinner S J, Wiemhofer H D, Lacorre P 2004 J. New Mater Electrochem Syst 7 51
[13] Marozau I P, Marrero-Lopez D, Shaula A L, Kharton V V, Tsipis E V, Nunez P, Frade J R 2004 Electrochim Acta 49 3517
[14] Yang J H, Gu Z H, Wen Z Y Yan D S 2005 Solid State Ionics 176 523
[15] Wang X P, Fang Q F, Li Z S, Zhang G G. Yi Z G 2002 Appl. Phys. Lett. 81 3434
[16] Fang Q F, Wang X P, Li Z S, Zhang G G, Yi Z G 2004 Mater Sci. Eng. A 370 365
[17] Khadasheva Z S, Venskovskii N U, Safronenko M G, Mosunov A V, Politova E D, Stefanovich S Y 2002 Inorg Mater 38 1168
[18] Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603 (in Chinese) [陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 60 046603]
[19] Wang J X, Wang X P, Liang F J, Cheng Z J, Fang Q F 2006 Solid State Ionics 177 1437
[20] Subramania A, Saradha T, Muzhunathi S 2008 J. Alloys Comp. 456 234
[21] Subramania A, Saradha T, Muzhunathi S 2008 Mater. Res. Bull. 43 1153
[22] Basu S Maiti H S 2010 Ionics 16 111
[23] Tealdi C, Malavasi L, Ritter C, Flor G, Costa G 2008 J. Solid State Chem. 181 603
[24] Marrero-Lopez D, Canales-Vazquez J, Ruiz-Morales J C, Rodriguez A, Irvine J T S, Nunez P 2005 Solid State Ionics 176 1807
[25] Marrero-Lopez D, Ruiz-Morales J C, Nunez P, Abrantes J C C, Frade J R 2004 J. Solid State Chem. 177 2378
[26] Saradha T, Muzhumathi S, Subramania A 2008 J. Solid State Electrochem 12 143
[27] Yi Z G, Fang Q F, Wang X P, Zhang G G 2003 Solid State Ionics 160 117
[28] Yang J H, Wen Z Y, Gu Z H, Yan D S 2005 J. Eur. Ceram Soc. 25 3315
[29] Li Q, Xia T, Li J Y, Liu X D, Ma X F, Meng J, Cao X Q 2004 J. Rare Earth 22 102
[30] Subramania A, Saradha T, Muzhumathi S 2007 J. Power Sources 167 319
[31] Georges S, Skinner S J, Lacorre P, Steil M C 2004 Dalton T. 19 3101
[32] Goutenoire F, Retoux R, Suard E, Lacorre P 1999 J Solid State Chem. 142 228
[33] Zhang Y W, Yang Y, Jin S, Tian S T, Li G B, Jia J T, Liao C S, Yan C H 2001 Chem. Mater. 13 372
[34] Zhang Y W, Jin S, Yang Y, Li G B, Tian S J, Liao C S, Yan C H 2000 Appl. Phys. Lett. 77 3409
[35] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J, 2008 Science 321 676
[36] Jiang X N, Wang H, Ma X Y, Meng X Q, Zhang Q Y 2008 Acta Phys. Sin. 57 1851 (in Chinese) [姜雪宁, 王昊, 马小叶, 孟宪芹, 张庆瑜 2008 57 1851]
[37] Laffez P, Chen X Y, Banerjee G, Pezeril T, Rossell M D, Van Tendeloo G, Lacorre P, Liu J M, Liu Z G 2006 Thin Solid Films 500 27
[38] Zhuang Z, Wang X P, Sun A H, Li Y, Fang Q F 2008 J. Sol-Gel Sci. Technol. 48 315
[39] Zhuang Z, Wang X P, Li D, Zhang T, Fang Q F 2009 J. Am. Ceram. Soc. 92 839
[40] Zhang D M. Zhuang Z, Gao Y X, Wang X P, Fang Q F 2010 Solid State Ionics 181 1510
[41] Zhang D M, Zhuang Z, Wang X P, Gao Y X, Fang Q F 2012 J. Eu.r Ceram Soc. 32 3239
[42] Das S, Mukhopadhyay A K, Datta S, Basu D 2009 Bull Mater Sci. 32 1
[43] Luo J, Zhu H T, Liang J K 2009 Physics 38 267 (in Chinese) [骆军, 朱航天, 梁敬魁 2009 物理 38 267]
[44] Xiang J, Li L P, Su W H 2003 Acta Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 52 1474]
[45] Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 59 7447]
计量
- 文章访问数: 5617
- PDF下载量: 942
- 被引次数: 0