搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧离子导体La1.9Y0.1Mo2O9细晶粒陶瓷的制备和电学性质研究

张德明 庄重 王先平 方前锋

引用本文:
Citation:

氧离子导体La1.9Y0.1Mo2O9细晶粒陶瓷的制备和电学性质研究

张德明, 庄重, 王先平, 方前锋

Synthesis and electrical property of oxide ionic conductor La1.9Y0.1Mo2O9 fine grain ceramic

Zhang De-Ming, Zhuang Zhong, Wang Xian-Ping, Fang Qian-Feng
PDF
导出引用
  • 采用溶胶凝胶法合成的La1.9Y0.1Mo2O9纳米晶粉体, 结合微波烧结技术制备出不同晶粒度的La1.9Y0.1Mo2O9块体样品. 利用X射线衍射仪(XRD)、高分辨透射显微镜(HRTEM)、场扫描显微镜(SEM)对粉体及陶瓷块体的物相、 形貌进行了表征, 利用交流阻抗谱仪测试了样品不同温度下的电导率. 实验结果表明, 掺Y的La1.9Y0.1Mo2O9能将高温立方β 相稳定到室温; 块体样品致密均匀, 平均晶粒度范围在60 nm–4 μm之间; 致密度高的样品表现出高的电导率, 其中900 ℃烧结样品的电导率600 ℃时高达0.026 S/cm, 比固相反应法制备的La1.9Y0.1Mo2O9样品高出约1倍. 总结认为样品的致密性对电导率影响较大, 是通过影响晶界电导率来影响总电导率的, 样品的晶粒度(在60 nm–4 μm范围内)对电导率的影响还不能确定.
    A series of La1.9Y0.1Mo2O9 bulk samples of different grain sizes were made by microwave sintering the nanocrystalline powders prepared by sol-gel methods. Phases, microstructure, grain size of the powders and bulk samples were examined by using X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM); and the electrical properties of the bulk samples were studied by AC impedance spectroscopy. Experimental results show that the substituent Y can stabilize the cubic β phase to room temperature; the bulk samples are dense and uniform with an average grain size from 60 nm to 4 μm; the highly dense bulk samples show enhanced ionic conduction, e.g. the conductivity of the sample with relative density 99% is 0.026 S/cm at 600 ℃, which is two times higher than that of bulk samples prepared by solid-state reaction. It can be concluded that the effect of sample density on the electrical conductivity is mainly due to the grain boundary conductivity; and the effect of sample grain size (from 60 nm to 4 μm) on the electrical properties is not so significant.
    [1]

    Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y 2000 Nature 404 856

    [2]

    Goutenoire F, Isnard O, Retoux R, Lacorre P 2000 Chem. Mate. 12 2575

    [3]

    Fang Q F, Wang X P, Zhang G G, Yi Z G 2003 J. Alloys Compd 355 177

    [4]

    Wang X P, Cheng Z J, Fang Q F 2005 Solid State Ionics 176 761

    [5]

    Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre P 2001 J. Mater. Chem. 11 119

    [6]

    Wang X P, Fang Q F 2002 Solid State Ionics 146 185

    [7]

    Subasri R, Matusch D, Nafe H, Aldinger F 2004 J. Eur. Ceram Soc. 24 129

    [8]

    Basu S, Devi P S, Maiti H S 2004 Appl. Phys. Lett. 85 3486

    [9]

    Zhang G G, Fang Q F, Wang X P, Yi Z G 2003 Phys. Stat. Sol. A 199 329

    [10]

    Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P 2003 Solid State Ionics 161 231

    [11]

    Georges S, Goutenoire F, Laligant Y, Lacorre P 2003 J. Mater Chem. 13 2317

    [12]

    Georges S, Goutenoire F, Bohnke O, Steil M C, Skinner S J, Wiemhofer H D, Lacorre P 2004 J. New Mater Electrochem Syst 7 51

    [13]

    Marozau I P, Marrero-Lopez D, Shaula A L, Kharton V V, Tsipis E V, Nunez P, Frade J R 2004 Electrochim Acta 49 3517

    [14]

    Yang J H, Gu Z H, Wen Z Y Yan D S 2005 Solid State Ionics 176 523

    [15]

    Wang X P, Fang Q F, Li Z S, Zhang G G. Yi Z G 2002 Appl. Phys. Lett. 81 3434

    [16]

    Fang Q F, Wang X P, Li Z S, Zhang G G, Yi Z G 2004 Mater Sci. Eng. A 370 365

    [17]

    Khadasheva Z S, Venskovskii N U, Safronenko M G, Mosunov A V, Politova E D, Stefanovich S Y 2002 Inorg Mater 38 1168

    [18]

    Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603 (in Chinese) [陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 60 046603]

    [19]

    Wang J X, Wang X P, Liang F J, Cheng Z J, Fang Q F 2006 Solid State Ionics 177 1437

    [20]

    Subramania A, Saradha T, Muzhunathi S 2008 J. Alloys Comp. 456 234

    [21]

    Subramania A, Saradha T, Muzhunathi S 2008 Mater. Res. Bull. 43 1153

    [22]

    Basu S Maiti H S 2010 Ionics 16 111

    [23]

    Tealdi C, Malavasi L, Ritter C, Flor G, Costa G 2008 J. Solid State Chem. 181 603

    [24]

    Marrero-Lopez D, Canales-Vazquez J, Ruiz-Morales J C, Rodriguez A, Irvine J T S, Nunez P 2005 Solid State Ionics 176 1807

    [25]

    Marrero-Lopez D, Ruiz-Morales J C, Nunez P, Abrantes J C C, Frade J R 2004 J. Solid State Chem. 177 2378

    [26]

    Saradha T, Muzhumathi S, Subramania A 2008 J. Solid State Electrochem 12 143

    [27]

    Yi Z G, Fang Q F, Wang X P, Zhang G G 2003 Solid State Ionics 160 117

    [28]

    Yang J H, Wen Z Y, Gu Z H, Yan D S 2005 J. Eur. Ceram Soc. 25 3315

    [29]

    Li Q, Xia T, Li J Y, Liu X D, Ma X F, Meng J, Cao X Q 2004 J. Rare Earth 22 102

    [30]

    Subramania A, Saradha T, Muzhumathi S 2007 J. Power Sources 167 319

    [31]

    Georges S, Skinner S J, Lacorre P, Steil M C 2004 Dalton T. 19 3101

    [32]

    Goutenoire F, Retoux R, Suard E, Lacorre P 1999 J Solid State Chem. 142 228

    [33]

    Zhang Y W, Yang Y, Jin S, Tian S T, Li G B, Jia J T, Liao C S, Yan C H 2001 Chem. Mater. 13 372

    [34]

    Zhang Y W, Jin S, Yang Y, Li G B, Tian S J, Liao C S, Yan C H 2000 Appl. Phys. Lett. 77 3409

    [35]

    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J, 2008 Science 321 676

    [36]

    Jiang X N, Wang H, Ma X Y, Meng X Q, Zhang Q Y 2008 Acta Phys. Sin. 57 1851 (in Chinese) [姜雪宁, 王昊, 马小叶, 孟宪芹, 张庆瑜 2008 57 1851]

    [37]

    Laffez P, Chen X Y, Banerjee G, Pezeril T, Rossell M D, Van Tendeloo G, Lacorre P, Liu J M, Liu Z G 2006 Thin Solid Films 500 27

    [38]

    Zhuang Z, Wang X P, Sun A H, Li Y, Fang Q F 2008 J. Sol-Gel Sci. Technol. 48 315

    [39]

    Zhuang Z, Wang X P, Li D, Zhang T, Fang Q F 2009 J. Am. Ceram. Soc. 92 839

    [40]

    Zhang D M. Zhuang Z, Gao Y X, Wang X P, Fang Q F 2010 Solid State Ionics 181 1510

    [41]

    Zhang D M, Zhuang Z, Wang X P, Gao Y X, Fang Q F 2012 J. Eu.r Ceram Soc. 32 3239

    [42]

    Das S, Mukhopadhyay A K, Datta S, Basu D 2009 Bull Mater Sci. 32 1

    [43]

    Luo J, Zhu H T, Liang J K 2009 Physics 38 267 (in Chinese) [骆军, 朱航天, 梁敬魁 2009 物理 38 267]

    [44]

    Xiang J, Li L P, Su W H 2003 Acta Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 52 1474]

    [45]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 59 7447]

  • [1]

    Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y 2000 Nature 404 856

    [2]

    Goutenoire F, Isnard O, Retoux R, Lacorre P 2000 Chem. Mate. 12 2575

    [3]

    Fang Q F, Wang X P, Zhang G G, Yi Z G 2003 J. Alloys Compd 355 177

    [4]

    Wang X P, Cheng Z J, Fang Q F 2005 Solid State Ionics 176 761

    [5]

    Goutenoire F, Isnard O, Suard E, Bohnke O, Laligant Y, Retoux R, Lacorre P 2001 J. Mater. Chem. 11 119

    [6]

    Wang X P, Fang Q F 2002 Solid State Ionics 146 185

    [7]

    Subasri R, Matusch D, Nafe H, Aldinger F 2004 J. Eur. Ceram Soc. 24 129

    [8]

    Basu S, Devi P S, Maiti H S 2004 Appl. Phys. Lett. 85 3486

    [9]

    Zhang G G, Fang Q F, Wang X P, Yi Z G 2003 Phys. Stat. Sol. A 199 329

    [10]

    Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P 2003 Solid State Ionics 161 231

    [11]

    Georges S, Goutenoire F, Laligant Y, Lacorre P 2003 J. Mater Chem. 13 2317

    [12]

    Georges S, Goutenoire F, Bohnke O, Steil M C, Skinner S J, Wiemhofer H D, Lacorre P 2004 J. New Mater Electrochem Syst 7 51

    [13]

    Marozau I P, Marrero-Lopez D, Shaula A L, Kharton V V, Tsipis E V, Nunez P, Frade J R 2004 Electrochim Acta 49 3517

    [14]

    Yang J H, Gu Z H, Wen Z Y Yan D S 2005 Solid State Ionics 176 523

    [15]

    Wang X P, Fang Q F, Li Z S, Zhang G G. Yi Z G 2002 Appl. Phys. Lett. 81 3434

    [16]

    Fang Q F, Wang X P, Li Z S, Zhang G G, Yi Z G 2004 Mater Sci. Eng. A 370 365

    [17]

    Khadasheva Z S, Venskovskii N U, Safronenko M G, Mosunov A V, Politova E D, Stefanovich S Y 2002 Inorg Mater 38 1168

    [18]

    Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603 (in Chinese) [陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 60 046603]

    [19]

    Wang J X, Wang X P, Liang F J, Cheng Z J, Fang Q F 2006 Solid State Ionics 177 1437

    [20]

    Subramania A, Saradha T, Muzhunathi S 2008 J. Alloys Comp. 456 234

    [21]

    Subramania A, Saradha T, Muzhunathi S 2008 Mater. Res. Bull. 43 1153

    [22]

    Basu S Maiti H S 2010 Ionics 16 111

    [23]

    Tealdi C, Malavasi L, Ritter C, Flor G, Costa G 2008 J. Solid State Chem. 181 603

    [24]

    Marrero-Lopez D, Canales-Vazquez J, Ruiz-Morales J C, Rodriguez A, Irvine J T S, Nunez P 2005 Solid State Ionics 176 1807

    [25]

    Marrero-Lopez D, Ruiz-Morales J C, Nunez P, Abrantes J C C, Frade J R 2004 J. Solid State Chem. 177 2378

    [26]

    Saradha T, Muzhumathi S, Subramania A 2008 J. Solid State Electrochem 12 143

    [27]

    Yi Z G, Fang Q F, Wang X P, Zhang G G 2003 Solid State Ionics 160 117

    [28]

    Yang J H, Wen Z Y, Gu Z H, Yan D S 2005 J. Eur. Ceram Soc. 25 3315

    [29]

    Li Q, Xia T, Li J Y, Liu X D, Ma X F, Meng J, Cao X Q 2004 J. Rare Earth 22 102

    [30]

    Subramania A, Saradha T, Muzhumathi S 2007 J. Power Sources 167 319

    [31]

    Georges S, Skinner S J, Lacorre P, Steil M C 2004 Dalton T. 19 3101

    [32]

    Goutenoire F, Retoux R, Suard E, Lacorre P 1999 J Solid State Chem. 142 228

    [33]

    Zhang Y W, Yang Y, Jin S, Tian S T, Li G B, Jia J T, Liao C S, Yan C H 2001 Chem. Mater. 13 372

    [34]

    Zhang Y W, Jin S, Yang Y, Li G B, Tian S J, Liao C S, Yan C H 2000 Appl. Phys. Lett. 77 3409

    [35]

    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook S J, Santamaria J, 2008 Science 321 676

    [36]

    Jiang X N, Wang H, Ma X Y, Meng X Q, Zhang Q Y 2008 Acta Phys. Sin. 57 1851 (in Chinese) [姜雪宁, 王昊, 马小叶, 孟宪芹, 张庆瑜 2008 57 1851]

    [37]

    Laffez P, Chen X Y, Banerjee G, Pezeril T, Rossell M D, Van Tendeloo G, Lacorre P, Liu J M, Liu Z G 2006 Thin Solid Films 500 27

    [38]

    Zhuang Z, Wang X P, Sun A H, Li Y, Fang Q F 2008 J. Sol-Gel Sci. Technol. 48 315

    [39]

    Zhuang Z, Wang X P, Li D, Zhang T, Fang Q F 2009 J. Am. Ceram. Soc. 92 839

    [40]

    Zhang D M. Zhuang Z, Gao Y X, Wang X P, Fang Q F 2010 Solid State Ionics 181 1510

    [41]

    Zhang D M, Zhuang Z, Wang X P, Gao Y X, Fang Q F 2012 J. Eu.r Ceram Soc. 32 3239

    [42]

    Das S, Mukhopadhyay A K, Datta S, Basu D 2009 Bull Mater Sci. 32 1

    [43]

    Luo J, Zhu H T, Liang J K 2009 Physics 38 267 (in Chinese) [骆军, 朱航天, 梁敬魁 2009 物理 38 267]

    [44]

    Xiang J, Li L P, Su W H 2003 Acta Phys. Sin. 52 1474 (in Chinese) [向军, 李莉萍, 苏文辉 2003 52 1474]

    [45]

    Hu Y G, Xiao J Z, Xia F, Wu X W, Yan S Z 2010 Acta Phys. Sin. 59 7447 (in Chinese) [胡永刚, 肖建中, 夏风, 武玺旺, 闫双志 2010 59 7447]

  • [1] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究.  , 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] 王晓艺, 王希, 王俊, 程德强, 王悦. V2O5-Al2O3助烧剂对低温烧结Li-Zn微波铁氧体性能的影响.  , 2023, 72(3): 037501. doi: 10.7498/aps.72.20221723
    [3] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性.  , 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [4] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响.  , 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [5] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱.  , 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [6] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响.  , 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [7] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究.  , 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [8] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响.  , 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [9] 陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋. 氧离子导体La2Mo2-xMxO9(M=Cr,W)的理论研究.  , 2011, 60(4): 046603. doi: 10.7498/aps.60.046603
    [10] 王洪超, 王春雷, 苏文斌, 刘剑, 赵越, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模. 烧结温度对La0.9Sr0.1FeO3热电性能的影响.  , 2010, 59(5): 3455-3460. doi: 10.7498/aps.59.3455
    [11] 张 忻, 李 佳, 路清梅, 张久兴, 刘燕琴. (Bi1-x Agx)2(Te1-ySey)3粉体的机械合金化制备及其放电等离子烧结体的热电输运特性.  , 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [12] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能.  , 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [13] 杨秋红, 徐 军, 豆传国, 张红伟, 丁 君, 唐在峰. La2O3对Yb:Y2O3透明陶瓷光谱性能的影响.  , 2007, 56(7): 3961-3965. doi: 10.7498/aps.56.3961
    [14] 陈镇平, 张金仓, 程国生, 李喜贵, 章讯生. 金属氧化物超导陶瓷Y-123体系烧结过程与结构缺陷的正电子实验研究.  , 2001, 50(3): 550-555. doi: 10.7498/aps.50.550
    [15] 康俊勇, S.TSUNEKAWA, A.KASUYA. 超细SnO2纳米晶粒带边光吸收的线度效应.  , 2001, 50(11): 2198-2202. doi: 10.7498/aps.50.2198
    [16] 韩志全. 微波铁氧体损耗的晶粒表层自旋波共振模型.  , 1999, 48(13): 291-297. doi: 10.7498/aps.48.291
    [17] 刘峰奇, 刘军政, 曹世勋, 程国生, 张金仓. YBa2Cu3O7-δ超导体氧缺陷的正电子寿命谱.  , 1995, 44(6): 929-935. doi: 10.7498/aps.44.929
    [18] 苏昉, 苏骏, 金嗣炤. 非晶态锂离子导体B2O3-0.7Li2O-0.7LiCl-xAl2O3-0.1V2O5的电学性质和电子自旋共振研究.  , 1992, 41(3): 448-458. doi: 10.7498/aps.41.448
    [19] 苏昉, 许伟, 苏骏. 非晶锂离子导体P2O5-0.7Li2O-0.4LiCl-0.1Al2O3的离子导电性与结构研究.  , 1991, 40(4): 596-603. doi: 10.7498/aps.40.596
    [20] 王常珍, 徐秀光. Bi2O3-Y2O3系高氧离子导体的离子电导和电子电导的研究.  , 1984, 33(2): 221-230. doi: 10.7498/aps.33.221
计量
  • 文章访问数:  5617
  • PDF下载量:  942
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-07
  • 修回日期:  2012-12-06
  • 刊出日期:  2013-04-05

/

返回文章
返回
Baidu
map