搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

F-函数扩展法求解超介质中的亮孤子和暗孤子

庄彬先 郭珺 项元江 戴小玉 文双春

引用本文:
Citation:

F-函数扩展法求解超介质中的亮孤子和暗孤子

庄彬先, 郭珺, 项元江, 戴小玉, 文双春

Bright and dark solitons in metamaterials obtained by extended F-expansion method

Zhuang Bin-Xian, Guo Jun, Xiang Yuan-Jiang, Dai Xiao-Yu, Wen Shuang-Chun
PDF
导出引用
  • 利用F-函数扩展法求解超介质中的超短脉冲传输方程, 探讨了超介质中的反常自陡效应和特有的二阶非线性色散效应所导致的新的孤子现象和规律. 结果表明, 正折射区的二阶非线性色散效应可以代替线性色散效应形成亮孤子; 正、负折射区的反常自陡效应由于其符号可改变, 从而可在特定条件下分别在反常色散和正常色散区形成有别于常规介质的亮、暗孤子; 反常自陡效应的符号或者反常自陡效应和三阶线性色散效应的相互比较关系能够控制亮、暗孤子中心的漂移方向.
    The ultra-short pulse equation in a metamaterial is solved by the extended F-expansion method. The new phenomena and characteristics of solitons, caused by the anomalous self-steepening effect and the second-order nonlinear dispersion in metamaterials, are discussed. The results show that the second-order nonlinear dispersion in the positive-index region may take the place of the linear dispersion to form the bright and dark solitons. Due to the switchable sign of the anomalous self-steepening effect in the positive-index and negative-index regions, the bright and dark solitons separately exist in the anomalous and normal dispersion regions under some specific conditions. The moving directions of the centers of bright and dark solitons can be controlled by the sign of the anomalous self-steepening effect or by the combination of the anomalous self-steepening effect and third-order linear dispersion.
    • 基金项目: 国家自然科学基金 (批准号: 10974049) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974049).
    [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press).

    [2]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 037401

    [3]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2004 Phys. Rev. E 69 016617

    [4]

    Zharova N A, Shadrivov I V, Zharov A A, Kivshar Y S 2005 Opt. Express 13 1291

    [5]

    D'Aguanno G 2004 Phys. Rev. Lett. 93 213902

    [6]

    Scalora M, de Ceglia D, D'Aguanno G, Mattiucci N, Akozbek N, Centini M, J. Bloemer M 2007 Phys. Rev. E 75 066606

    [7]

    Scalora M, Syrchin M S, Akozbek N, Poliakov E Y, D'Aguanno G, Mattiucci N, Bloemer M J, Zheltikov A M 2005 Phys. Rev. Lett. 95 013902

    [8]

    Lazarides N, Eleftheriou M, Tsironis G P 2006 Phys. Rev. Lett. 97 157406

    [9]

    Liu Y M, Bartal G A, Genov D, Zhang X 2007 Phys. Rev. Lett. 99 153901

    [10]

    Kockaert P, Tassin P, der Sande G V, Veretennicoff I, Tlidi M 2007 Phys. Rev. A 74 033822 Tassin P, Gelens L, Danckaert J, Veretennicoff I, der Sande G V, Kockaert P, Tlidi M 2007 Chaos 17 037116

    [11]

    Wen S, Xiang Y, Dai X, Tang Z, Su W, Fan D 2007 Phys. Rev. A 75 033815

    [12]

    Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617

    [13]

    Wen S, Xiang Y, Su W, Hu Y, Fu X, Fan D 2006 Opt. Express 14 1568

    [14]

    Zhang J G, Wen S C, Xiang Y J, Wang Y W, Luo H L 2010 Phys. Rev. A 81 023829

    [15]

    Dai X Y, Xiang Y J, Wen S C, Fan D Y 2010 Optics Communications 283 1607

    [16]

    Cheng X, Zhuang B X, Dai X Y, Su W H, Wen S C 2009 Journal of Nonlinear Optical Physics and Materials 18 271

    [17]

    Liu H L, Wen S C, Xiong M, Dai X Y 2007 Acta Physica Sinica 56 6473 (in Chinese) [刘海兰, 文双春, 熊敏, 戴小玉 2007 56 6473]

    [18]

    Li P G, Yang R C, Xu Z Y 2010 Phys. Rev. E 82 046603

    [19]

    Yang R C, Zhang Y 2011 J. Opt. Soc. Am. B 28 123

    [20]

    Chen C, Dong J, Yang R C 2012 Acta Photonica Sinica 41 288 (in Chinese) [陈诚, 董佳, 杨荣草 2012 光子学报 41 288]

    [21]

    Dai X Y, Wen S C, Xiang Y J 2008 Acta Phys. Sini. 57 186 (in Chinese) [戴小玉, 文双春, 项元江 2008 57 186]

    [22]

    Xiang Y J, Dai X Y, Wen S C, Guo J, Fan D Y 2011 Phys. Rev. A 84 033815

    [23]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016602

    [24]

    Potasek M J 1987 Optics Letters 12 921

    [25]

    Abdou M A 2007 Chaos, Solitons and Fractals 31 95

    [26]

    Palacios S L, Guinea A, Fernandez-Diaz J M, Crespo R D 1999 Phys. Rev. E 60 R45

  • [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press).

    [2]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 037401

    [3]

    Shadrivov I V, Sukhorukov A A, Kivshar Y S 2004 Phys. Rev. E 69 016617

    [4]

    Zharova N A, Shadrivov I V, Zharov A A, Kivshar Y S 2005 Opt. Express 13 1291

    [5]

    D'Aguanno G 2004 Phys. Rev. Lett. 93 213902

    [6]

    Scalora M, de Ceglia D, D'Aguanno G, Mattiucci N, Akozbek N, Centini M, J. Bloemer M 2007 Phys. Rev. E 75 066606

    [7]

    Scalora M, Syrchin M S, Akozbek N, Poliakov E Y, D'Aguanno G, Mattiucci N, Bloemer M J, Zheltikov A M 2005 Phys. Rev. Lett. 95 013902

    [8]

    Lazarides N, Eleftheriou M, Tsironis G P 2006 Phys. Rev. Lett. 97 157406

    [9]

    Liu Y M, Bartal G A, Genov D, Zhang X 2007 Phys. Rev. Lett. 99 153901

    [10]

    Kockaert P, Tassin P, der Sande G V, Veretennicoff I, Tlidi M 2007 Phys. Rev. A 74 033822 Tassin P, Gelens L, Danckaert J, Veretennicoff I, der Sande G V, Kockaert P, Tlidi M 2007 Chaos 17 037116

    [11]

    Wen S, Xiang Y, Dai X, Tang Z, Su W, Fan D 2007 Phys. Rev. A 75 033815

    [12]

    Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617

    [13]

    Wen S, Xiang Y, Su W, Hu Y, Fu X, Fan D 2006 Opt. Express 14 1568

    [14]

    Zhang J G, Wen S C, Xiang Y J, Wang Y W, Luo H L 2010 Phys. Rev. A 81 023829

    [15]

    Dai X Y, Xiang Y J, Wen S C, Fan D Y 2010 Optics Communications 283 1607

    [16]

    Cheng X, Zhuang B X, Dai X Y, Su W H, Wen S C 2009 Journal of Nonlinear Optical Physics and Materials 18 271

    [17]

    Liu H L, Wen S C, Xiong M, Dai X Y 2007 Acta Physica Sinica 56 6473 (in Chinese) [刘海兰, 文双春, 熊敏, 戴小玉 2007 56 6473]

    [18]

    Li P G, Yang R C, Xu Z Y 2010 Phys. Rev. E 82 046603

    [19]

    Yang R C, Zhang Y 2011 J. Opt. Soc. Am. B 28 123

    [20]

    Chen C, Dong J, Yang R C 2012 Acta Photonica Sinica 41 288 (in Chinese) [陈诚, 董佳, 杨荣草 2012 光子学报 41 288]

    [21]

    Dai X Y, Wen S C, Xiang Y J 2008 Acta Phys. Sini. 57 186 (in Chinese) [戴小玉, 文双春, 项元江 2008 57 186]

    [22]

    Xiang Y J, Dai X Y, Wen S C, Guo J, Fan D Y 2011 Phys. Rev. A 84 033815

    [23]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys. Rev. E 64 016602

    [24]

    Potasek M J 1987 Optics Letters 12 921

    [25]

    Abdou M A 2007 Chaos, Solitons and Fractals 31 95

    [26]

    Palacios S L, Guinea A, Fernandez-Diaz J M, Crespo R D 1999 Phys. Rev. E 60 R45

  • [1] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [2] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [3] 陈礼元, 高超, 林机, 李慧军. $ {\cal{PT}}$对称极化子凝聚体系统中的稳定孤子及其调控.  , 2022, 71(18): 181101. doi: 10.7498/aps.71.20220475
    [4] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波.  , 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输.  , 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 朱坤占, 贾维国, 张魁, 于宇, 张俊萍, 门克内木乐. 在反常色散区艾里脉冲与光孤子相互作用规律的研究.  , 2016, 65(2): 024208. doi: 10.7498/aps.65.024208
    [7] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响.  , 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [8] 乔海龙, 贾维国, 刘宝林, 王旭东, 门克内木乐, 杨军, 张俊萍. 拉曼增益对孤子传输特性的影响.  , 2013, 62(10): 104212. doi: 10.7498/aps.62.104212
    [9] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性.  , 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [10] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究.  , 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [11] 李建, 文光俊, 黄勇军, 王平, 孙元华. 基于电谐振单元的超介质吸波材料及矩形波导匹配终端应用研究.  , 2013, 62(8): 087801. doi: 10.7498/aps.62.087801
    [12] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法.  , 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [13] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究.  , 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [14] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解.  , 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [15] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子.  , 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [16] 刘海兰, 文双春, 熊 敏, 戴小玉. 超常介质中暗孤子的形成和传输特性研究.  , 2007, 56(11): 6473-6479. doi: 10.7498/aps.56.6473
    [17] 沈守枫. (1+1)维广义的浅水波方程的变量分离解和孤子激发模式.  , 2006, 55(3): 1016-1022. doi: 10.7498/aps.55.1016
    [18] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播.  , 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [19] 徐 岩, 薛德胜, 左 维, 李发伸. 非均匀交换各向异性铁磁介质的非线性表面自旋波.  , 2003, 52(11): 2896-2900. doi: 10.7498/aps.52.2896
    [20] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用.  , 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
计量
  • 文章访问数:  7620
  • PDF下载量:  779
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-09
  • 修回日期:  2012-10-16
  • 刊出日期:  2013-03-05

/

返回文章
返回
Baidu
map