-
在室内行人疏散过程中,行人博弈对疏散效率有着重要的影响.本文把抵制博弈策略更新的强度定义为抵制强度. 为了研究抵制强度对疏散效率的影响, 通过在行人博弈策略更新的概率中引入抵制强度,基于元胞自动机模型数值计算在不同的行人密度, 出口宽度下疏散总时间随抵制强度变化的关系.结果表明: 室内行人疏散过程中, 抵制强度小会使得争抢行为极其容易蔓延. 当行人密度小且出口宽大时, 输入以急速疏散为主的规范信息,鼓励行人模仿优胜者更新博弈策略, 当行人密度大且出口狭小时, 输入以避让为主的规范信息抑制行人争抢,都能提高疏散效率. 最后找出不同条件下与最短疏散总时间相对应的优化抵制强度, 为提高室内行人疏散效率提供一个新的视角.In the process of indoor pedestrian evacuation, the game between pedestrians greatly influence evacuation efficiency. In this paper, we introduce the boycott strength into the updated game strategy coefficient in order to investigate the influence of boycott strength on the evacuation efficiency. The relations between the evacuation time and boycott strength for different pedestrian densities and exit widths are obtained by numerical simulations based on cellular automaton model. The results show that the vying behaviors are extremely easy to spread and the crowd will turn into a vying state when the boycott strength is small. When the pedestrian density is low and the exit is wide, we encourage the pedestrians to imitate the winners to update their game strategies via offering the information about standardizing roles about rapid evacuation. When the pedestrian density is high and the exit is narrow, the information about standardizing roles about avoiding to congestion is provided. Thus, the evacuation efficiency can be enhanced. Finally, the optimal boycott strength corresponding to the shortest evacuation time in different conditions is yielded. Our study provides a new perspective to enhance the efficiency of indoor pedestrian evacuation.
-
Keywords:
- cellular automaton /
- pedestrian flow /
- evacuation dynamics /
- game
[1] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282
[2] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[3] Helbing D 2001 Rev. Mod. Phys. 73 1067
[4] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[5] Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 66117
[6] Nagatani T 1998 Physica A 261 599
[7] Nagatani T 1999 Physica A 264 581
[8] Okazaki S 1979 Transactions of Architectural Institute of Japan 283 111
[9] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) p10 (in Chinese) [贾斌,高自友,李克平,李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社) 第10 页]
[10] Hao Q Y, Jiang R, Hu M B, Jia B, Wu Q S 2011 Phys. Rev. E 84 036107
[11] Zheng X P, Cheng Y 2011 Physica A 390 1042
[12] Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523 (in Chinese) [岳昊, 邵春福, 姚智胜 2009 58 4523]
[13] Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺,邝华, 刘慕仁,孔令江 2009 58 3001]
[14] Xue Y, Tian H H, He H D, Lu W Z, Wei Y F 2009 Eur. Phys. J. B 69 289
[15] Tian H H, Xue Y, He H D, Wei Y F, Lu W Z 2009 Physica A 388 2895
[16] Xie J J, Xue Y 2011 Seventh International Conference on Natural Computation Shanghai, China, July 26-28, 2011 p2283
[17] Wu Z X, Rong Z H, Wang W X 2008 Advances in Mechanics 38 794 (in Chinese) [吴枝喜,荣智海, 王文旭 2008 力学进展 38 794]
[18] Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W M, Railsback S F, Thulke H H, Weiner J, Wiegand T, Deangelis D L 2005 Science 310 987
[19] Szabo G, Toke C 1998 Phys. Rev. E 5869
[20] Szabo G, Hauert C 2002 Phys. Rev. Lett. 89 118101
[21] Szabo G, Vukov J, Szolnoki A 2005 Phys. Rev. E 72 047107
[22] Vukov J, Szabo G, Szolnoki A 2006 Phys. Rev. E 73 067103
[23] Vukov J, Szabo G, Szolnoki A 2008 Phys. Rev. E 77 026109
[24] Zhao L, Zhou X, Liang Z, Wu J R 2012 Chin. Phys. B 21 018701
[25] Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507
-
[1] Helbing D, Molnar P 1995 Phys. Rev. E 51 4282
[2] Helbing D, Farkas I, Vicsek T 2000 Nature 407 487
[3] Helbing D 2001 Rev. Mod. Phys. 73 1067
[4] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[5] Kuang H, Li X L, Song T, Dai S Q 2008 Phys. Rev. E 78 66117
[6] Nagatani T 1998 Physica A 261 599
[7] Nagatani T 1999 Physica A 264 581
[8] Okazaki S 1979 Transactions of Architectural Institute of Japan 283 111
[9] Jia B, Gao Z Y, Li K P, Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) p10 (in Chinese) [贾斌,高自友,李克平,李新刚 2007 基于元胞自动机的交通系统建模与模拟 (北京:科学出版社) 第10 页]
[10] Hao Q Y, Jiang R, Hu M B, Jia B, Wu Q S 2011 Phys. Rev. E 84 036107
[11] Zheng X P, Cheng Y 2011 Physica A 390 1042
[12] Yue H, Shao C F, Yao Z S 2009 Acta Phys. Sin. 58 4523 (in Chinese) [岳昊, 邵春福, 姚智胜 2009 58 4523]
[13] Zhou J W, Kuang H, Liu M R, Kong L J 2009 Acta Phys. Sin. 58 3001 (in Chinese) [周金旺,邝华, 刘慕仁,孔令江 2009 58 3001]
[14] Xue Y, Tian H H, He H D, Lu W Z, Wei Y F 2009 Eur. Phys. J. B 69 289
[15] Tian H H, Xue Y, He H D, Wei Y F, Lu W Z 2009 Physica A 388 2895
[16] Xie J J, Xue Y 2011 Seventh International Conference on Natural Computation Shanghai, China, July 26-28, 2011 p2283
[17] Wu Z X, Rong Z H, Wang W X 2008 Advances in Mechanics 38 794 (in Chinese) [吴枝喜,荣智海, 王文旭 2008 力学进展 38 794]
[18] Grimm V, Revilla E, Berger U, Jeltsch F, Mooij W M, Railsback S F, Thulke H H, Weiner J, Wiegand T, Deangelis D L 2005 Science 310 987
[19] Szabo G, Toke C 1998 Phys. Rev. E 5869
[20] Szabo G, Hauert C 2002 Phys. Rev. Lett. 89 118101
[21] Szabo G, Vukov J, Szolnoki A 2005 Phys. Rev. E 72 047107
[22] Vukov J, Szabo G, Szolnoki A 2006 Phys. Rev. E 73 067103
[23] Vukov J, Szabo G, Szolnoki A 2008 Phys. Rev. E 77 026109
[24] Zhao L, Zhou X, Liang Z, Wu J R 2012 Chin. Phys. B 21 018701
[25] Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507
计量
- 文章访问数: 7088
- PDF下载量: 644
- 被引次数: 0