搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于伪逆法的数字温度计温度修正曲线重建算法

康哲铭 纪金龙 康品春 刘君健 吕艺晖 郭鹭清

引用本文:
Citation:

基于伪逆法的数字温度计温度修正曲线重建算法

康哲铭, 纪金龙, 康品春, 刘君健, 吕艺晖, 郭鹭清

Algorithm of reconstrucing temperature correction curve of digital thermometer based on pseudo inverse method

Kang Zhe-Ming, Ji Jin-Long, Kang Pin-Chun, Liu Jun-Jian, Lv Yi-Hui, Guo Lu-Qing
PDF
HTML
导出引用
  • 目前, 基于工业铂电阻的高精度数字温度计已成为当下热门研究方向. 但受其材料和制作工艺的影响, 其测量精度相对一般, 且随使用年限的增加, 出现阻值漂移导致测温偏差在所难免. 而温度修正算法则是提高数字温度计测量精度的有效方法. 传统的补偿函数修正算法修正效果良好, 但无法解决阻值漂移等问题; 分段线性修正算法原理简单、易于实现, 但需多点测温和在面对温度修正曲线非线性变化时, 则限制了其修正准确度和普适性. 因此, 本文提出了一种基于伪逆法的温度修正曲线重建算法. 该方法利用原始标定数据和多个特征温度点建立重建矩阵. 在实际使用中, 通过待重建的特征温度点便能重建完整的温度修正曲线, 并将重建的温度修正曲线自动纳入样本库中, 从而提高样本的多样性和算法的修正精度. 实验结果表明, 该算法在面对温度修正曲线非线性变化和漂移时, 具有更好的修正效果, 且仅需采集4个特征温度点便能较好地重建完整的温度修正曲线. 因此, 该算法可以为提高数字温度计测量精度提供有效的支撑.
    At present, high-precision digital thermometers based on industrial platinum resistance have become a popular research direction and are widely used in environmental monitoring, medical health, industrial automation and other fields. However, due to the influence of materials and manufacturing processes, the measurement accuracy is average. With the increase of service life, it is inevitable that the temperature measurement deviation will be caused by the drift of the resistance value. The algorithm of correcting temperature is an effective method to improve the measurement accuracy of digital thermometers. Traditional compensation function correction algorithms such as polynomial fitting and B-spline fitting have good correction effect, but the problems of resistance drift cannot be solved. The segmented linear correction algorithm is simple and easy to implemente, but it requires multi-point temperature measurements. Because of the nonlinear changes of the temperature correction curve, the correction effect is average, which limits its correction accuracy and universality. Therefore, we propose n algorithm of reconstructing temperature correction curve based on the pseudo inverse method. Firstly, the reconstruction matrix is built by using the original data and multiple characteristic temperature points. Then, the complete temperature correction curve is reconstructed by the characteristic temperature points to be reconstructed and the reconstruction matrix. Finally, the reconstructed temperature correction curve is automatically included in the sample database, which improves the diversity of samples and the correction accuracy of the algorithm. Experimental results show that the proposed algorithm has a better correction effect on nonlinear changes and drifts of the temperature correction curve. And the proposed algorithm is less affected by the number of characteristic temperature points and the selection combination. The complete temperature correction curve is well reconstructed by collecting only 4 characteristic temperature points. Therefore, the proposed algorithm can provide the effective support for improving the measurement accuracy of digital thermometer.
  • 图 1  基于伪逆法的温度修正曲线重建算法流程

    Fig. 1.  Process of temperature correction curve reconstruction algorithm based on PINV.

    图 2  不同时间下采集的温度修正曲线

    Fig. 2.  Temperature correction curve measured by different times.

    图 3  不同特征温度点个数情况下基于分段线性修正算法和本文算法重建的温度修正曲线 (a) 特征温度点个数为4; (b) 特征温度点个数为5; (c) 特征温度点个数为6; (d) 特征温度点个数为7; (e) 特征温度点个数为8

    Fig. 3.  Reconstructed temperature correction curve based on the piecewise linear correction algorithm and the proposed algorithm by different number of characteristic temperature points: (a) Number of characteristic temperature points is 4; (b) number of characteristic temperature points is 5; (c) number of characteristic temperature points is 6; (d) number of characteristic temperature points is 7; (e) number of characteristic temperature points is 8.

    图 4  在3种方案情况下基于本文算法重建的温度修正曲线 (a) 方案一; (b) 方案二; (c) 方案三

    Fig. 4.  Reconstructed temperature correction curve based on the proposed algorithm by three schemes: (a) Scheme 1; (b) scheme 2; (c) scheme 3.

    表 1  不同特征温度点个数情况下的特征温度点组合

    Table 1.  Combination of characteristic temperature points by different number of characteristic temperature points.

    特征温度点数量/个45678
    特征温度点1/℃–100–100–100–100–100
    特征温度点2/℃50–50–50–50–50
    特征温度点3/℃15050000
    特征温度点4/℃250150505050
    特征温度点5/℃250150100100
    特征温度点6/℃250200150
    特征温度点7/℃250200
    特征温度点8/℃250
    下载: 导出CSV

    表 2  基于分段线性修正算法和本文算法重建的温度修正曲线的RMSE值

    Table 2.  RMSEs of the reconstructed temperature correction curve based on the piecewise linear correction algorithm and the proposed algorithm.

    特征温度点数量/个 4 5 6 7 8
    多段线性修正算法
    /RMSE值
    0.0264 0.0288 0.0176 0.0190 0.0129
    本文算法/RMSE值 0.0065 0.0055 0.0054 0.0057 0.0054
    下载: 导出CSV

    表 3  不同特征温度点组合方案

    Table 3.  Combination schemes by different characteristic temperature points.

    特征温度点1/℃特征温度点2/℃特征温度点3/℃特征温度点4/℃
    方案一–10050150250
    方案二–1000100200
    方案三–5050150250
    下载: 导出CSV
    Baidu
  • [1]

    Preston-Thomas H 1990 Metrologia 27 186

    [2]

    Coakley K J, Clark A V, Hehman C S 2003 Meas. Sci. Technol. 14 21Google Scholar

    [3]

    方院生, 王琦, 丁诚, 王文龙, 唐曦凌, 马勇 2015 测控技术 11 9Google Scholar

    Fang Y S, Wang Q, Ding C, Wang W L, Tang X L, Ma Y 2015 Meas. Con. Technol. 11 9Google Scholar

    [4]

    方院生, 姚丽娟, 肖勇, 王琦 2014 测控技术 33 145Google Scholar

    Fang Y S, Yao L J, Xiao Y, Wang Q 2014 Meas. Con. Technol. 33 145Google Scholar

    [5]

    胡静静, 沈媛媛 2024 流体测量与控制 5 23

    Hu J J, Shen Y Y 2024 Fluid Measurem. Contr. 5 23

    [6]

    任建平, 孙建平, 李婷, 何佳融, 曾佳旭 2021 计量学报 42 589Google Scholar

    Ren J P, Sun J P, Li T, He J R, Zeng J X 2021 Acta Metrol. Sin. 42 589Google Scholar

    [7]

    Pearce J V, Rusby R L, Harris P M 2013 Metrologia 50 345Google Scholar

    [8]

    Babita PU, Meena H, Gupta G 2022 Measurement 203 111994Google Scholar

    [9]

    冯邻江, 卢明肖, 周寻, 严俐, 蔡翱, 谢雨辰 2024 自动化技术与应用 43 57

    Fen L J, Lu M X, Zhou X, Yan L, Cai Y, Xie Y C 2024 Techn. Automat. Appl. 43 57

    [10]

    何慎之 2024 中国仪器仪表 6 53Google Scholar

    He S Z 2024 China Instrum. 6 53Google Scholar

    [11]

    魏永超, 刘倩倩, 朱泓超, 朱姿翰, 李锦 2024 红外技术 46 843

    We Y C, Liu Q Q, Zhu H C, Zhu Z H, Li J 2024 Infrared Technol. 46 843

    [12]

    吴志祥, 周祥才, 黄亮, 陈功 2014 自动化与仪表 2 57Google Scholar

    Wu Z X, Zhou X C, Huang L, Chen G 2014 Automat. Instrumentation 2 57Google Scholar

    [13]

    王昕, 康哲铭, 刘龙, 范贤光 2020 69 200701Google Scholar

    Wang X, Kang Z M, Liu L, Fan X G 2020 Acta Phys. Sin. 69 200701Google Scholar

    [14]

    王昕, 康哲铭, 刘龙, 范贤光 2020 光子学报 49 0330001Google Scholar

    Wang X, Kang Z M, Liu L, Fan X G 2020 Acta Photonica Sin. 49 0330001Google Scholar

    [15]

    Cadusch P J, Hlaing M M, Wade S A 2013 J. Raman. Spectrosc. 44 1587Google Scholar

    [16]

    Martin T, Cohen E, Kirby R M 2009 Comput. Aided Geom. D. 26 648

    [17]

    Wang W, Pottmann H, Liu Y 2006 ACM T. Graphic. 25 214Google Scholar

    [18]

    魏国, 王昕, 雷苗, 孙圣和 2008 传感器与微系统 27 54Google Scholar

    Wei G, Wang X, Lei M, Sun S H 2008 TMT 27 54Google Scholar

    [19]

    刘龙2021博士学位论文(厦门: 厦门大学)

    Liu L 2021 Ph. D. Dissertation (Xiamen: Xiamen University

    [20]

    Chen S, Ong Y H, Liu Q 2012 J. Raman. Spectrosc. 44 875

  • [1] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建.  , doi: 10.7498/aps.71.20211421
    [2] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建.  , doi: 10.7498/aps.70.20211421
    [3] 夏正德, 宋娜, 刘宾, 潘晋孝, 闫文敏, 邵子惠. 基于字典学习的稠密光场重建算法.  , doi: 10.7498/aps.69.20191621
    [4] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像.  , doi: 10.7498/aps.66.054202
    [5] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较.  , doi: 10.7498/aps.64.240201
    [6] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建.  , doi: 10.7498/aps.63.194207
    [7] 杨富强, 张定华, 黄魁东, 王鹍, 徐哲. CT不完全投影数据重建算法综述.  , doi: 10.7498/aps.63.058701
    [8] 古宇飞, 闫镔, 李磊, 魏峰, 韩玉, 陈健. 基于全变分最小化和交替方向法的康普顿散射成像重建算法.  , doi: 10.7498/aps.63.018701
    [9] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , doi: 10.7498/aps.62.174212
    [10] 王华英, 于梦杰, 刘飞飞, 江亚男, 宋修法, 高亚飞. 基于同态信号处理的数字全息广义线性重建算法研究.  , doi: 10.7498/aps.62.234207
    [11] 冯玉霄, 黄群星, 梁军辉, 王飞, 严建华, 池涌. 三维燃烧介质和壁面温度的非接触联合重建研究.  , doi: 10.7498/aps.61.134702
    [12] 李俊昌. 数字全息重建图像的焦深研究.  , doi: 10.7498/aps.61.134203
    [13] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究.  , doi: 10.7498/aps.60.060701
    [14] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究.  , doi: 10.7498/aps.59.8499
    [15] 李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal. 散射光彩色数字全息光学系统及波面重建算法研究.  , doi: 10.7498/aps.59.4646
    [16] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究.  , doi: 10.7498/aps.59.2457
    [17] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 非对称碳氢扩散火焰内烟黑浓度与温度联合重建模型研究.  , doi: 10.7498/aps.57.7928
    [18] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建.  , doi: 10.7498/aps.57.4812
    [19] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法.  , doi: 10.7498/aps.57.4282
    [20] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究.  , doi: 10.7498/aps.56.6742
计量
  • 文章访问数:  182
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-08-21
  • 上网日期:  2024-09-03

/

返回文章
返回
Baidu
map