搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分段线性电路切换系统的复杂行为及非光滑分岔机理

吴立锋 关永 刘勇

引用本文:
Citation:

分段线性电路切换系统的复杂行为及非光滑分岔机理

吴立锋, 关永, 刘勇

Complicated behaviors and non-smooth bifurcation of a switching system with piecewise linearchaotic circuit

Wu Li-Feng, Guan Yong, Liu Yong
PDF
导出引用
  • 分析了分段线性电路系统在周期切换下的复杂动力学行为及其产生的机理. 基于平衡点分析, 给出了两子系统Fold分岔和Hopf分岔条件. 考虑了在不同稳定态时两子系统周期切换的分岔特性, 产生了不同的周期振荡, 并揭示了其产生的机理. 在不同的周期振荡中, 切换点的数量随参数变化产生倍化, 导致切换系统由倍周期分岔进入混沌.
    The complex dynamical and non-smooth bifurcations of a compound system with periodic switches between two piecewise linear chaotic circuits are investigated. Based on the analysis of equilibrium states, the conditions for Fold bifurcation and Hopf bifurcation are derived to explore the bifurcations of the compound system with periodic switches while there are different stable solutions in the two subsystems. Different types of oscillations of the swithing system are observed, and the mechanism is studied and presented. In the difference of periodic oscillations, the number of the swithing points increases doubly with the variation of the parameter, which leads from period-doubling bifurcation to chaos.
    • 基金项目: 国家自然科学基金 (批准号: 61070049, 61202027)、国际科技合作资金 (批准号: 2012DFA11340) 和北京市自然科学基金 (批准号: 4122015)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61070049, 61202027), the National Key Technology R&D Project of China (No. 2012DFA11340), and the Natural Science Foundation of Beijing, China (Grant No. 4122015).
    [1]

    Bartissol P, Chua L O 1988 IEEE Trans. Circ. Syst. 35 1512

    [2]

    Bai E W, Lonngren K E 2002 Chaos, Solitons and Fractals 13 1515

    [3]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 54 3029 ]

    [4]

    Cveticanin L, Abd El-Latif G M, El-Naggar A M, Ismail G M 2008 J. Sound and Vibration 318 580

    [5]

    Ji Y, Bi Q S 2010 Acta Phys. Sin. 59 7612 (in Chinese) [季颖, 毕勤胜 2010 59 7612 ]

    [6]

    Madan R N 1993 Chua's Circuit: A Paradigm for Chaos (Singapore: World Scientific Press) p122

    [7]

    Koliopanos C L, Kyprianidis I M, Stouboulos I N, Anagnostopoulos A N, Magafas L 2003 Chaos, Solitons and Fractals 16 173

    [8]

    Contou-Carrere M N, Daoutidis P 2005 IEEE Trans. Auto. Cont. 50 1831

    [9]

    Karagiannopoulos C G 2007 J. Electrostatics 65 535

    [10]

    Zhang X F, Chen X K, Bi Q S 2013 Acta Phys. Sin. 62 010502 (in Chinese) [张晓芳, 陈小可, 毕勤胜 2013 62 010502 ]

    [11]

    Daniele F P, Pascal C, Laura G 2001 Commun. Nonlinear Sci. Numer. Simulat. 16 916

    [12]

    Ueta T, Kawakami H 2002 Int. Symposium on Circuits and Systems Toskushima Japan, May 26-29, 2002II-544

    [13]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [14]

    Zhusubaliyev Z H, Mosekilde E 2003 Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems (Singapore: World Scientific )

    [15]

    Putyrski M, Schultz C 2011 Chem. Biol. 18 1126

    [16]

    Zhang W, Yu P 2000 J. Sound Vib. 231 145

    [17]

    Sun Z D, Zheng D Z 2001 IEEE Trans. Auto. Cont. 46 291

    [18]

    Leine R I 2006 Phys. D 223 121

    [19]

    Guo S Q, Yang S P, Guo J B 2005 J. Vibra. Engineering 18 276 (in Chinese) [郭树起, 杨绍普, 郭京波 2005 振动工程学报 18 276]

    [20]

    Baglietto M, Battistelli G, Scardovi L 2007 Automatica 43 1442

    [21]

    Branicky M S 1998 IEEE Automat. Contr. 43 475

    [22]

    Xu X P, Antsaklis P J 2000 Int. J. Contr. 73 1261

    [23]

    Gao C, Bi Q S, Zhang Z D 2013 Acta Phys. Sin. 62 020504 (in Chinese) [高超, 毕勤胜, 张正娣 2013 62 020504 ]

    [24]

    Sprott J C 2000 Amer. J. Phys. 68 758

    [25]

    Wang X F, Zhang B 2007 Proceedings of the IEEE International Conference on Automation and Logistics Jinan China August 2462

  • [1]

    Bartissol P, Chua L O 1988 IEEE Trans. Circ. Syst. 35 1512

    [2]

    Bai E W, Lonngren K E 2002 Chaos, Solitons and Fractals 13 1515

    [3]

    Yu H J, Liu Y Z 2005 Acta Phys. Sin. 54 3029 (in Chinese) [于洪洁, 刘延柱 2005 54 3029 ]

    [4]

    Cveticanin L, Abd El-Latif G M, El-Naggar A M, Ismail G M 2008 J. Sound and Vibration 318 580

    [5]

    Ji Y, Bi Q S 2010 Acta Phys. Sin. 59 7612 (in Chinese) [季颖, 毕勤胜 2010 59 7612 ]

    [6]

    Madan R N 1993 Chua's Circuit: A Paradigm for Chaos (Singapore: World Scientific Press) p122

    [7]

    Koliopanos C L, Kyprianidis I M, Stouboulos I N, Anagnostopoulos A N, Magafas L 2003 Chaos, Solitons and Fractals 16 173

    [8]

    Contou-Carrere M N, Daoutidis P 2005 IEEE Trans. Auto. Cont. 50 1831

    [9]

    Karagiannopoulos C G 2007 J. Electrostatics 65 535

    [10]

    Zhang X F, Chen X K, Bi Q S 2013 Acta Phys. Sin. 62 010502 (in Chinese) [张晓芳, 陈小可, 毕勤胜 2013 62 010502 ]

    [11]

    Daniele F P, Pascal C, Laura G 2001 Commun. Nonlinear Sci. Numer. Simulat. 16 916

    [12]

    Ueta T, Kawakami H 2002 Int. Symposium on Circuits and Systems Toskushima Japan, May 26-29, 2002II-544

    [13]

    Zhusubaliyev Z H, Mosekilde E 2008 Phys. Lett. A 372 2237

    [14]

    Zhusubaliyev Z H, Mosekilde E 2003 Bifurcation and Chaos in Piecewise-Smooth Dynamical Systems (Singapore: World Scientific )

    [15]

    Putyrski M, Schultz C 2011 Chem. Biol. 18 1126

    [16]

    Zhang W, Yu P 2000 J. Sound Vib. 231 145

    [17]

    Sun Z D, Zheng D Z 2001 IEEE Trans. Auto. Cont. 46 291

    [18]

    Leine R I 2006 Phys. D 223 121

    [19]

    Guo S Q, Yang S P, Guo J B 2005 J. Vibra. Engineering 18 276 (in Chinese) [郭树起, 杨绍普, 郭京波 2005 振动工程学报 18 276]

    [20]

    Baglietto M, Battistelli G, Scardovi L 2007 Automatica 43 1442

    [21]

    Branicky M S 1998 IEEE Automat. Contr. 43 475

    [22]

    Xu X P, Antsaklis P J 2000 Int. J. Contr. 73 1261

    [23]

    Gao C, Bi Q S, Zhang Z D 2013 Acta Phys. Sin. 62 020504 (in Chinese) [高超, 毕勤胜, 张正娣 2013 62 020504 ]

    [24]

    Sprott J C 2000 Amer. J. Phys. 68 758

    [25]

    Wang X F, Zhang B 2007 Proceedings of the IEEE International Conference on Automation and Logistics Jinan China August 2462

  • [1] 王月娥, 吴保卫, 汪锐. 切换系统的异步镇定: 相邻模型依赖平均驻留时间.  , 2015, 64(5): 050201. doi: 10.7498/aps.64.050201
    [2] 曹伟, 郭媛, 孙明. 基于迭代学习的离散切换系统故障估计.  , 2014, 63(18): 180202. doi: 10.7498/aps.63.180202
    [3] 曹伟, 孙明. 时变离散切换系统的迭代学习控制.  , 2014, 63(2): 020201. doi: 10.7498/aps.63.020201
    [4] 陈章耀, 雪增红, 张春, 季颖, 毕勤胜. 周期切换下Rayleigh振子的振荡行为及机理.  , 2014, 63(1): 010504. doi: 10.7498/aps.63.010504
    [5] 李清都, 郭建丽. 切换系统Lyapunov指数的算法及应用.  , 2014, 63(10): 100501. doi: 10.7498/aps.63.100501
    [6] 张晓芳, 周建波, 张春, 毕勤胜. 非线性切换系统的动力学行为分析.  , 2013, 62(24): 240505. doi: 10.7498/aps.62.240505
    [7] 高超, 毕勤胜, 张正娣. 一个跃变电路切换系统的振荡行为及分岔机理分析.  , 2013, 62(2): 020504. doi: 10.7498/aps.62.020504
    [8] 张晓芳, 陈小可, 毕勤胜. 多分界面下四维蔡氏电路的张弛簇发及其机制研究.  , 2013, 62(1): 010502. doi: 10.7498/aps.62.010502
    [9] 余跃, 张春, 韩修静, 姜海波, 毕勤胜. 周期切换下Chen系统的振荡行为与非光滑分岔分析.  , 2013, 62(2): 020508. doi: 10.7498/aps.62.020508
    [10] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理.  , 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [11] 高在瑞, 沈艳霞, 纪志成. 离散时间切换广义系统的一致有限时间稳定性.  , 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [12] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析.  , 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [13] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理.  , 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [14] 吴天一, 张正娣, 毕勤胜. 切换电路系统的振荡行为及其非光滑分岔机理.  , 2012, 61(7): 070502. doi: 10.7498/aps.61.070502
    [15] 张银, 毕勤胜. 具有多分界面的非线性电路中的非光滑分岔.  , 2011, 60(7): 070507. doi: 10.7498/aps.60.070507
    [16] 刘扬正, 林长圣, 王忠林. 新的切换四涡卷超混沌系统及其电路实现.  , 2010, 59(12): 8407-8413. doi: 10.7498/aps.59.8407
    [17] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究.  , 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [18] 季颖, 毕勤胜. 分段线性混沌电路的非光滑分岔分析.  , 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [19] 李 明, 马西奎, 戴 栋, 张 浩. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析.  , 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌.  , 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  7057
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-04
  • 修回日期:  2013-03-26
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map