-
本文制备了联苯乙烯衍生物(4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-biphenyl, DPVBi)为发光层的蓝色有机电致发光器件. 器件性能随发光层厚度变化而变. 在DPVBi厚度为1050 nm范围内, 同样电流密度下器件亮度及效率随DPVBi厚度增加先增后减, 40 nm时最佳, 最高亮度达到15840 cd/m2, 最高外量子效率达到3.2%, 器件色坐标(Commission Internationale de l'Eclairage (CIE) co-ordinates) 为(0.15, 0.15). DPVBi厚度超过40 nm时器件发光光谱出现红移而致色度变差, 其原因可归于微腔效应所致. 同时, 通过实验结果分析表明DPVBi中激子扩散长度位于2030 nm范围.Thickness of emissive layer in organic electroluminescent device is one of the important factors affecting the device performance. In this report, a blue electroluminescent device with an active layer of 4, 4'-bis(2, 2'-diphenylvinyl) -1, 1'- biphenyl (DPVBi) is fabricated. The device performance varies with the thickness of DPVBi. With the increase of the DPVBi thickness between 1050 nm, the device luminance and efficiency at the same current density first increase and then decrease, the device with a DPVBi thickness of 40 nm exhibits the highest luminance of 15840 cd/m2 and a maximum external quantum efficiency of 3.2%, with Commission Internationale de l'Eclairage (CIE) co-ordinates being (0.15, 0.15). The luminescent spectral red shift and the color purity deteriorate when the thickness is over 40 nm, which can be attributed to a result of microcavity effect. In the meantime, the analysis from experimental results shows that the exciton diffusion length in DPVBi is between 2030 nm.
-
Keywords:
- luminescence /
- organic electroluminescence /
- blue /
- electroluminescent efficiency
[1] Zhou Y C, Zhou J, Zhao J M, Zhang S T, Zhan Y Q, Wang X Z, Wu Y, Ding X M, Hou X Y 2006 Appl. Phys. A 83 465
[2] Jiao B, Wu Z X, Yan X W, Hou X 2010 Appl. Phys. A 98 239
[3] Yap C C, Yahaya M, Salleh M M 2008 Curr. Appl. Phys. 8 637
[4] Xie W F, Hou J Y, Liu S Y 2003 Semicond. Sci. Technol. 18 L42
[5] Hosokawa C, Higashi H, Nakamura H, Kusumoto T 1995 Appl. Phys. Lett. 67 3853
[6] Wu Y Z, Zheng X Y, Zhu W Q, Zhang B X, Jiang X Y, Zhang Z L, Xu S H 2002 Semiconductor Optoelectronics 23 253 (in Chinese) [吴有智, 郑新友, 朱文清, 张步新, 蒋雪茵, 张志林, 许少鸿 2002 半导体光电 23 253]
[7] Cao J, Jiang X Y, Zhang Z L 2006 Appl. Phys. Lett. 89 252108
[8] Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504
[9] Zhang Y, Li Y, Duan L, Zhang D Q, Qiu Y 2007 Acta Phys. Chim. Sin. 23 455 (in Chinese) [张锐, 李杨, 段炼, 张德强, 邱勇 2007 物理化学学报 23 455]
[10] Gebler D D, Wang Y Z, Blatchford J W, Jessen S W, Fu D K, Swager T M, MacDiarmid A G, Epstein A J 1997 Appl. Phys. Lett. 70 1644
[11] So S K, Choi W K, Leung L M, Neyts K 1999 Appl. Phys. Lett. 74 1939
[12] Jiang W L, Wang J, Ding G Y, Wang J, Wang L Z, Han Q, Liu S Y 2006 Chi. J. Lum. 27 561 (in Chinese) [姜文龙, 王静, 丁桂英, 汪津, 王立忠, 韩强, 刘式墉 2006 发光学报 27 561]
[13] Tse S C, Kwok K C, So S K 2006 Appl. Phys. Lett. 89 262102
[14] Lin C L, Lin H W, Wu C C 2006 Appl. Phys. Lett. 87 021101
[15] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954
[16] Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227
[17] Tang C W, Van Slyke S A, Chen C H 1989 J. Appl. Phys. 65 3610
[18] Kalinowski J, Fattori V, Marco P D 2001 Chem. Phys. 266 85
-
[1] Zhou Y C, Zhou J, Zhao J M, Zhang S T, Zhan Y Q, Wang X Z, Wu Y, Ding X M, Hou X Y 2006 Appl. Phys. A 83 465
[2] Jiao B, Wu Z X, Yan X W, Hou X 2010 Appl. Phys. A 98 239
[3] Yap C C, Yahaya M, Salleh M M 2008 Curr. Appl. Phys. 8 637
[4] Xie W F, Hou J Y, Liu S Y 2003 Semicond. Sci. Technol. 18 L42
[5] Hosokawa C, Higashi H, Nakamura H, Kusumoto T 1995 Appl. Phys. Lett. 67 3853
[6] Wu Y Z, Zheng X Y, Zhu W Q, Zhang B X, Jiang X Y, Zhang Z L, Xu S H 2002 Semiconductor Optoelectronics 23 253 (in Chinese) [吴有智, 郑新友, 朱文清, 张步新, 蒋雪茵, 张志林, 许少鸿 2002 半导体光电 23 253]
[7] Cao J, Jiang X Y, Zhang Z L 2006 Appl. Phys. Lett. 89 252108
[8] Matsushima T, Kinoshita Y, Murata H 2007 Appl. Phys. Lett. 91 253504
[9] Zhang Y, Li Y, Duan L, Zhang D Q, Qiu Y 2007 Acta Phys. Chim. Sin. 23 455 (in Chinese) [张锐, 李杨, 段炼, 张德强, 邱勇 2007 物理化学学报 23 455]
[10] Gebler D D, Wang Y Z, Blatchford J W, Jessen S W, Fu D K, Swager T M, MacDiarmid A G, Epstein A J 1997 Appl. Phys. Lett. 70 1644
[11] So S K, Choi W K, Leung L M, Neyts K 1999 Appl. Phys. Lett. 74 1939
[12] Jiang W L, Wang J, Ding G Y, Wang J, Wang L Z, Han Q, Liu S Y 2006 Chi. J. Lum. 27 561 (in Chinese) [姜文龙, 王静, 丁桂英, 汪津, 王立忠, 韩强, 刘式墉 2006 发光学报 27 561]
[13] Tse S C, Kwok K C, So S K 2006 Appl. Phys. Lett. 89 262102
[14] Lin C L, Lin H W, Wu C C 2006 Appl. Phys. Lett. 87 021101
[15] Dodabalapur A, Rothberg L J, Jordan R H, Miller T M, Slusher R E, Phillips J M 1996 J. Appl. Phys. 80 6954
[16] Chen S F, Deng L L, Xie J, Peng L, Xie L H, Fan Q L, Huang W 2010 Adv. Mater. 22 5227
[17] Tang C W, Van Slyke S A, Chen C H 1989 J. Appl. Phys. 65 3610
[18] Kalinowski J, Fattori V, Marco P D 2001 Chem. Phys. 266 85
计量
- 文章访问数: 7787
- PDF下载量: 758
- 被引次数: 0