搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态结构与性质关系Ⅰ——Mg熔体的运动黏度及与熔体微观结构的关系

弭光宝 李培杰 Охапкин А В Константинова Н Ю Сабирзянов А А Попель П С

引用本文:
Citation:

液态结构与性质关系Ⅰ——Mg熔体的运动黏度及与熔体微观结构的关系

弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С

Relationship between liquid structure and property Ⅰ— Kinematic viscosity of magnesium melt and its relationship with the microstructure

Сабирзянов А А, Попель П С, Mi Guang-Bao, Li Pei-Jie, Охапкин А В, Константинова Н Ю
PDF
导出引用
  • 采用坩埚扭摆振动法测量Mg熔体的运动黏度,得到935—1190 K温度区间高精度的黏度-温度关系曲线v(T),发现升温和降温过程中Mg熔体的黏度随温度变化呈指数规律单调递增(减),没有发生异常变化和滞后现象.同时,利用液态结构中原子集团演变行为的物理模型,计算得出该温度区间Mg熔体的主要结构信息参数——原子集团尺寸-温度关系曲线d(T);通过对实验和计算数据的综合分析,发现Mg熔体的运动黏度和原子集团尺寸均为温度的单值函数,且二者之间存在线性的函数关
    The method of crucible rotating oscillation damping was employed to measure the kinematic viscosity of magnesium melt and the curve of viscosity v versus temperature T from 935 K to 1190 K was obtained. It is exponential increase (decrease) law of viscosity with the temperature during heating and cooling process; Besides, based on the physical model for evolution behavior of atomic cluster in liquid structure, the main structural information of magnesium melt in this temperature interval — the curve of size d of atomic cluster versus temperature T was obtained; By analyzing the experimental and calculated data, it is found that both kinematic viscosity and size of atomic cluster of magnesium melt are monodrome function of the temperature and the relation between them is linear function, i.e., v=v0 + K·d(T). This relation reveals the change characteristic of viscosity for magnesium melt microstructure, which presents a new way for calculating kinematic viscosity of metal melt and understanding the micro-nature deeply.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB613702)和国际科技合作项目(批准号:2007DFC50090)资助的课题.
    [1]

    Wang Q, Lu K Q, Li Y X 2001 Chinese Science Bulletin 46 1431

    [2]

    Baum B A, Hassin G A, Tyagunov G V 1984 Liquid Steel (Moscow: Metallurgical Industry Press) p6 (in Russian)

    [3]

    Angell C A 1995 Science 267 1924

    [4]

    Geng H R, Sun J C, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [5]

    Li Y X 2005 Principle of material processing (Beijing: Tsinghua University Press) (in Chinese) [李言祥 2005 材料加工原理 (北京:清华大学出版社)]

    [6]

    Iida T, Rodarick I L 1993 The Properties of Liquid Metal (Ox-Ford: Clavendon Press) p148

    [7]

    Assael M J, Kakosimos K, R Banish M 2006 J. Phys. Chem. Ref. Data 35 285

    [8]

    Zhang W, Liu C C, Wang H Y, Xu Y S, Shi Y Q 2008 Acta Phys. Sin. 57 3875 (in Chinese) [张 雯、刘彩池、王海云、徐岳生、石义情 2008 57 3875]

    [9]

    Sklyarchuk V, Plevachuk Yu, Yakymovych A 2009 Int. J. Thermophys 30 1400

    [10]

    Samsonov G V 1976 Handbook of elemental nature-the first part: physical nature (Moscow: Metallurgy Press) P235 (in Russian)

    [11]

    Cmitls K R 1980 Metal manual (Moscow: Metallurgy Press) P335 (in Russian)

    [12]

    Regel A R, Glazov V M 1980 Physical property of electron melt (Moscow: Science press) P13 (in Russian)

    [13]

    Iouns W R P, Bartlett W L 1952 J. Inst. Met. 81 145

    [14]

    Alsenchiyev P P 1982 Iron 5 14

    [15]

    Qin J Y, Bian X F, Wang W M, Sliusarenko S I 1998 Acta Phys. Sin. 57 3875 (in Chinese) [秦敬玉、边秀房、王伟民、Sliusarenko S I 1998 47 438]

    [16]

    Poole P H, Grande T, Angell C A, McMillan P F 1997 Science 275 322

    [17]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaeki V, Lippmann T, Reiterk G 2000 Nature 408 839

    [18]

    Shvidkovskii E G, Goriaga G I 1956 Journal of Moscow State University 6 33 (in Russian)

    [19]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 Journal of atomic and molecular physics 21 663 (in Chinese) [杨中喜、耿浩然、陶珍东、孙春静 2004 原子与分子 21 663]

    [20]

    Mi G B, Li P J, He L J 2010 Sci. China Phys. Mech. Astron 53 1571

    [21]

    Mi G B, Li P J, He L J 2010 Sci. China Phys. Mech. Astron 53 1823

    [22]

    Shvidkovskii E G 1955 Some problems in the viscosity of molten metals (Moscow: Gostekhizdat) p83 (in Russian)

    [23]

    Bazin Yu A, Zamrtin V M, Hasiipov Ya A 1985 Trans Higher Educ-Ferrous Metall 5 28 (in Russian)

    [24]

    Glazov V M, Vobst M, Timoshinko V I 1989 Research methods for the nature of liquid metals and semiconductors ( Moscow: Metallurgy Press) p245 (in Russian)

    [25]

    Chhabra R P, Seth D K 1990 Z. Metallkde 81 264

    [26]

    Kolobnev I F, Krimov V V, Polianskii A P 1957 Caster manual-shaped castings of aluminium and magnesium alloys (Moscow: MASHGR) p5 (in Russian)

    [27]

    Li P J 1994 Ph D Dissertation (Harbin: Harbin Institute of Technology) p64—72 (in Chinese) [李培杰 1994 博士学位论文(哈尔滨:哈尔滨工业大学) 第64—72页]

    [28]

    Skrebcov A M 2009 Trans Higher Educ-Ferrous Metall 2 28 (in Russian)

    [29]

    Qi J G 2006 Ph D Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese) [齐锦刚2006 博士学位论文 (北京: 北京科技大学)]

    [30]

    Zhang R L 1993 Empirical Electron Theory of Solids and Molecules (Jilin: Jilin Science and Technology Press) (in Chinese) [张瑞林1993 固体与分子经验电子理论 (长春:吉林科学技术出版社)]

    [31]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed.) (New York: McGraw-Hill) P6.124

    [32]

    Levin E S, Geld P V, Yakubchik V P 1975 Acta Metall Sin. USSR Acad Sci. 5 80 (in Russian)

    [33]

    Roik A S, Samsonnikov A V, Kazimirov V P 2006 Metal 3 24 (in Russian)

    [34]

    Byharenko V V, Chen S Sh, Ilinskii A G 1991 Metal Physics 1992 (in Russian)

  • [1]

    Wang Q, Lu K Q, Li Y X 2001 Chinese Science Bulletin 46 1431

    [2]

    Baum B A, Hassin G A, Tyagunov G V 1984 Liquid Steel (Moscow: Metallurgical Industry Press) p6 (in Russian)

    [3]

    Angell C A 1995 Science 267 1924

    [4]

    Geng H R, Sun J C, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [5]

    Li Y X 2005 Principle of material processing (Beijing: Tsinghua University Press) (in Chinese) [李言祥 2005 材料加工原理 (北京:清华大学出版社)]

    [6]

    Iida T, Rodarick I L 1993 The Properties of Liquid Metal (Ox-Ford: Clavendon Press) p148

    [7]

    Assael M J, Kakosimos K, R Banish M 2006 J. Phys. Chem. Ref. Data 35 285

    [8]

    Zhang W, Liu C C, Wang H Y, Xu Y S, Shi Y Q 2008 Acta Phys. Sin. 57 3875 (in Chinese) [张 雯、刘彩池、王海云、徐岳生、石义情 2008 57 3875]

    [9]

    Sklyarchuk V, Plevachuk Yu, Yakymovych A 2009 Int. J. Thermophys 30 1400

    [10]

    Samsonov G V 1976 Handbook of elemental nature-the first part: physical nature (Moscow: Metallurgy Press) P235 (in Russian)

    [11]

    Cmitls K R 1980 Metal manual (Moscow: Metallurgy Press) P335 (in Russian)

    [12]

    Regel A R, Glazov V M 1980 Physical property of electron melt (Moscow: Science press) P13 (in Russian)

    [13]

    Iouns W R P, Bartlett W L 1952 J. Inst. Met. 81 145

    [14]

    Alsenchiyev P P 1982 Iron 5 14

    [15]

    Qin J Y, Bian X F, Wang W M, Sliusarenko S I 1998 Acta Phys. Sin. 57 3875 (in Chinese) [秦敬玉、边秀房、王伟民、Sliusarenko S I 1998 47 438]

    [16]

    Poole P H, Grande T, Angell C A, McMillan P F 1997 Science 275 322

    [17]

    Reichert H, Klein O, Dosch H, Denk M, Honkimaeki V, Lippmann T, Reiterk G 2000 Nature 408 839

    [18]

    Shvidkovskii E G, Goriaga G I 1956 Journal of Moscow State University 6 33 (in Russian)

    [19]

    Yang Z X, Geng H R, Tao Z D, Sun C J 2004 Journal of atomic and molecular physics 21 663 (in Chinese) [杨中喜、耿浩然、陶珍东、孙春静 2004 原子与分子 21 663]

    [20]

    Mi G B, Li P J, He L J 2010 Sci. China Phys. Mech. Astron 53 1571

    [21]

    Mi G B, Li P J, He L J 2010 Sci. China Phys. Mech. Astron 53 1823

    [22]

    Shvidkovskii E G 1955 Some problems in the viscosity of molten metals (Moscow: Gostekhizdat) p83 (in Russian)

    [23]

    Bazin Yu A, Zamrtin V M, Hasiipov Ya A 1985 Trans Higher Educ-Ferrous Metall 5 28 (in Russian)

    [24]

    Glazov V M, Vobst M, Timoshinko V I 1989 Research methods for the nature of liquid metals and semiconductors ( Moscow: Metallurgy Press) p245 (in Russian)

    [25]

    Chhabra R P, Seth D K 1990 Z. Metallkde 81 264

    [26]

    Kolobnev I F, Krimov V V, Polianskii A P 1957 Caster manual-shaped castings of aluminium and magnesium alloys (Moscow: MASHGR) p5 (in Russian)

    [27]

    Li P J 1994 Ph D Dissertation (Harbin: Harbin Institute of Technology) p64—72 (in Chinese) [李培杰 1994 博士学位论文(哈尔滨:哈尔滨工业大学) 第64—72页]

    [28]

    Skrebcov A M 2009 Trans Higher Educ-Ferrous Metall 2 28 (in Russian)

    [29]

    Qi J G 2006 Ph D Dissertation (Beijing: University of Science & Technology Beijing) (in Chinese) [齐锦刚2006 博士学位论文 (北京: 北京科技大学)]

    [30]

    Zhang R L 1993 Empirical Electron Theory of Solids and Molecules (Jilin: Jilin Science and Technology Press) (in Chinese) [张瑞林1993 固体与分子经验电子理论 (长春:吉林科学技术出版社)]

    [31]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed.) (New York: McGraw-Hill) P6.124

    [32]

    Levin E S, Geld P V, Yakubchik V P 1975 Acta Metall Sin. USSR Acad Sci. 5 80 (in Russian)

    [33]

    Roik A S, Samsonnikov A V, Kazimirov V P 2006 Metal 3 24 (in Russian)

    [34]

    Byharenko V V, Chen S Sh, Ilinskii A G 1991 Metal Physics 1992 (in Russian)

  • [1] 李哲旭, 李新换, 贺三军, 周芷千, 刘丽艳, 于万瑭, 赵修良. NaCl:Cu烧结剂量片在X/γ辐照下的光释光特性.  , 2022, 71(13): 137801. doi: 10.7498/aps.71.20220014
    [2] 张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅. 一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性.  , 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [3] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [4] 高铭泽, 张沛红. 纳米SiO2/环氧树脂复合材料介电性与纳米粒子分散性关系.  , 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [5] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究.  , 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [6] 刘晓波, 施宏宇, 陈博, 蒋延生, 徐卓, 张安学. 折射率梯度表面机理的研究.  , 2014, 63(21): 214201. doi: 10.7498/aps.63.214201
    [7] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证.  , 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [8] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究.  , 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [9] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系.  , 2011, 60(5): 056601. doi: 10.7498/aps.60.056601
    [10] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究.  , 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [11] 张 雯, 刘彩池, 王海云, 徐岳生, 石义情. 半导体硅熔体的有效(磁)黏度.  , 2008, 57(6): 3875-3879. doi: 10.7498/aps.57.3875
    [12] 张佃中. 非线性时间序列互信息与Lempel-Ziv复杂度的相关性研究.  , 2007, 56(6): 3152-3157. doi: 10.7498/aps.56.3152
    [13] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [14] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究.  , 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [15] 耿浩然, 孙春静, 杨中喜, 王 瑞, 吉蕾蕾. 金属熔体黏度与结构相关性的分子动力学模拟.  , 2006, 55(3): 1320-1324. doi: 10.7498/aps.55.1320
    [16] 王 丽, 李 辉, 边秀房, 孙民华, 刘相法, 刘洪波, 陈魁英. 纯铝熔体微观结构演变及液固相关性研究….  , 2000, 49(1): 45-48. doi: 10.7498/aps.49.45
    [17] 龚新高, 郑庆祺. 镓原子集团结构的第一性原理分子动力学研究.  , 1993, 42(2): 244-251. doi: 10.7498/aps.42.244
    [18] 王德和. 非晶态硅(锗)中的原子相关性和结构模型.  , 1992, 41(5): 792-797. doi: 10.7498/aps.41.792
    [19] 唐景昌, 付送保, 季红, 陈一兵. 利用原子集团多重散射理论决定HCOO-Cu(110)的结构.  , 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
    [20] 马文淦, 林趾荣, 张桂根, 舒启清, 郑克勤. Al2O3隧道结势垒参数与上电极金属的相关性.  , 1991, 40(3): 483-489. doi: 10.7498/aps.40.483
计量
  • 文章访问数:  8644
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-25
  • 修回日期:  2010-09-16
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map