-
研究了在分子束外延制备的AlN/蓝宝石模板上采用金属有机物化学气相外延生长的非故意掺杂GaN的材料性质.采用X射线衍射(XRD)、透射电镜(TEM)和原子力显微镜研究了AlN模板的晶体质量和表面相貌对GaN的影响.结果表明,当AlN的表面粗糙度较小时,尽管AlN模板的位错密度较高((102)面XRD ω扫描半高全宽900—1500 arcsec),但生长得到的GaN依然具有和在蓝宝石衬底上采用"二步法"生长的GaN可比拟的晶体质量((002)面XRD ω扫描半高全宽200—30
-
关键词:
- 氮化镓 /
- 氮化铝 /
- 金属有机物化学气相外延
Properties of unintentionally-doped GaN re-grown on molecular beam epitaxy grown AlN/Sapphire templates by metal organic vapor phase epitaxy (MOVPE) are studied in this article. X-ray diffraction (XRD), transmission electron microscope (TEM), and atomic force microscope are used to investigate the influence of the crystal quality and surface morphology of AlN on the GaN. It is found that when surface roughness of AlN is small, the GaN has a full width at half maximum (FWHM) values of XRD rocking curves (200—300 and 400—500 arcsec for (002) and (102) plane ω-scan, respectively) and surface roughness (0.1—0.2 nm), which are comparable to those grown on sapphire substrates by using "two-step" method, although the FWHMs of (102) plane XRD ω-scan curves of AlN are 900—1500 arcsec. The reason for dislocation reduction in GaN shown by TEM image is that a part of dislocations in AlN are eliminated in the interface between AlN and GaN. This is probably due to the lattice restoration from Ga atoms for their large size. On the other hand, when surface roughness of AlN is large, the surface migration of Ga atoms is nestricted during the MOVPE growth, which results in a poor GaN quality. Moreover, the resistivity of GaN confirmed with Van der Pauw method is between 105 and 106 Ω ·cm, which is about six orders of magnitude higher than that in GaN grown on sapphire substrates. This is attributed to the replacement of low temperature GaN buffer layer by the AlN.-
Keywords:
- GaN /
- AlN /
- metal organic vapor phase epitaxy
[1] Nakamura S, Mukai T, Senoh M 1991 Jpn. J. Appl. Phys. 30 L1998
[2] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[3] Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214
[4] Shao J P, Hu H, Guo W P, Wang L, Luo Y, Sun C Z, Hao Z B 2005 Acta. Phys. Sin. 54 3905 (in Chinese) [邵嘉平、胡 卉、郭文平、汪 莱、罗 毅、孙长征、郝智彪 2005 54 3905]
[5] Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta. Phys. Sin. 53 2720 (in Chinese) [罗 毅、郭文平、邵嘉平、胡 卉、韩彦军、薛 松、汪 莱、孙长征、郝智彪 2004 53 2720]
[6] Ren F, Hao Zhibiao, Wang L, Wang L, Li Hongtao, Luo Yi 2010 Chin. Phys. B 19 017306
[7] Xi G Y, Ren F, Hao Zhibiao, Wang L, Li H T, Jiang Y, Zhao W, Han Y J, Luo Y 2008 Acta. Phys. Sin. 57 7238 (in Chinese) [席光义、任 凡、郝智彪、汪 莱、李洪涛、江 洋、赵 维、韩彦军、罗 毅 2008 57 7238]
[8] Yoshida S, Misawa S, Gonda S 1983 Appl. Phys. Lett. 42 427
[9] Sakai M, Ishikawa H, Egawa T, Jimbo T, Umeno M, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M, Oda O 2002 J. Cryst. Growth 244 6
[10] Arulkumaran S, Sakai M, Egawa T, Ishikawa H, Jimbo T, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M, Oda O 2002 Appl. Phys. Lett. 81 1131
[11] Egawa T, Ohmura H, Ishikawa H, Jimbo T 2002 Appl. Phys. Lett. 81 292
[12] Zhang B J, Egawa T, Liu Y, Ishikawa H, Jimbo T 2003 Phys. Stat. Sol. (c) 7 2244
[13] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M, Oda O 2004 Appl. Phys. Lett. 85 1710
[14] Zhang B J, Egawa T, Ishikawa H, Liu Y, Jimbo T 2004 J. Appl. Phys. 95 3170
[15] Jiang H, Egawa T, Hao M, Liu Y 2005 Appl. Phys. Lett. 87 241911-1
[16] Miyoshi M, Kuraoka Y, Asai K, Shibata T, Tanaka M, Egawa T 2007 IEEE Electron. Lett. 43 953
[17] Jiang H, Egawa T 2007 Appl. Phys. Lett. 90 121121-1
[18] Zhou Z T, Guo L W, Xing Z G, Ding G J, Zhang J, Peng M Z, Jia H Q, Chen H, Zhou J M 2007 Chin. Phys. Lett. 24 1641
[19] Yu H, Ozturk M K, Ozcelik S, Ozbay E 2006 J. Cryst. Growth 293 273
[20] Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145
[21] Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821
-
[1] Nakamura S, Mukai T, Senoh M 1991 Jpn. J. Appl. Phys. 30 L1998
[2] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y 1996 Jpn. J. Appl. Phys. 35 L74
[3] Khan M A, Bhattarai A, Kuznia J N, Olson D T 1993 Appl. Phys. Lett. 63 1214
[4] Shao J P, Hu H, Guo W P, Wang L, Luo Y, Sun C Z, Hao Z B 2005 Acta. Phys. Sin. 54 3905 (in Chinese) [邵嘉平、胡 卉、郭文平、汪 莱、罗 毅、孙长征、郝智彪 2005 54 3905]
[5] Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta. Phys. Sin. 53 2720 (in Chinese) [罗 毅、郭文平、邵嘉平、胡 卉、韩彦军、薛 松、汪 莱、孙长征、郝智彪 2004 53 2720]
[6] Ren F, Hao Zhibiao, Wang L, Wang L, Li Hongtao, Luo Yi 2010 Chin. Phys. B 19 017306
[7] Xi G Y, Ren F, Hao Zhibiao, Wang L, Li H T, Jiang Y, Zhao W, Han Y J, Luo Y 2008 Acta. Phys. Sin. 57 7238 (in Chinese) [席光义、任 凡、郝智彪、汪 莱、李洪涛、江 洋、赵 维、韩彦军、罗 毅 2008 57 7238]
[8] Yoshida S, Misawa S, Gonda S 1983 Appl. Phys. Lett. 42 427
[9] Sakai M, Ishikawa H, Egawa T, Jimbo T, Umeno M, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M, Oda O 2002 J. Cryst. Growth 244 6
[10] Arulkumaran S, Sakai M, Egawa T, Ishikawa H, Jimbo T, Shibata T, Asai K, Sumiya S, Kuraoka Y, Tanaka M, Oda O 2002 Appl. Phys. Lett. 81 1131
[11] Egawa T, Ohmura H, Ishikawa H, Jimbo T 2002 Appl. Phys. Lett. 81 292
[12] Zhang B J, Egawa T, Liu Y, Ishikawa H, Jimbo T 2003 Phys. Stat. Sol. (c) 7 2244
[13] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M, Oda O 2004 Appl. Phys. Lett. 85 1710
[14] Zhang B J, Egawa T, Ishikawa H, Liu Y, Jimbo T 2004 J. Appl. Phys. 95 3170
[15] Jiang H, Egawa T, Hao M, Liu Y 2005 Appl. Phys. Lett. 87 241911-1
[16] Miyoshi M, Kuraoka Y, Asai K, Shibata T, Tanaka M, Egawa T 2007 IEEE Electron. Lett. 43 953
[17] Jiang H, Egawa T 2007 Appl. Phys. Lett. 90 121121-1
[18] Zhou Z T, Guo L W, Xing Z G, Ding G J, Zhang J, Peng M Z, Jia H Q, Chen H, Zhou J M 2007 Chin. Phys. Lett. 24 1641
[19] Yu H, Ozturk M K, Ozcelik S, Ozbay E 2006 J. Cryst. Growth 293 273
[20] Heinke H, Kirchner V, Einfeldt S, Hommel D 2000 Appl. Phys. Lett. 77 2145
[21] Ng H M, Doppalapudi D, Moustakas T D, Weimann N G, Eastman L F 1998 Appl. Phys. Lett. 73 821
计量
- 文章访问数: 10027
- PDF下载量: 1276
- 被引次数: 0