-
采用晶格Boltzmann方法研究了激发介质中螺旋波的失稳,计算机数值模拟给出了激发介质中螺旋波失稳前后的速度场分布,并结合斑图和波头轨迹进行讨论发现,稳定螺旋波的速度场分布表现为螺旋波旋转中心处的速度做周期突变;在螺旋波开始失稳时,速度场分布表现为该位置粒子速度突变加快最后变得无规律,使速度集团分解无规律,导致速度场分布越来越混乱,并最终使系统进入时空混沌态.
-
关键词:
- 晶格Boltzmann方法 /
- 激发介质 /
- 螺旋波 /
- 时空混沌
The instability of the spiral wave in an excitable medium is investigated by using the lattice Boltzmann method. The velocity distribution of the system are obtained by computer simulation, and discussed in connection with the pattern and the tip trajectory of the spiral wave. We find that the velocity of the particle at the rotating center of spiral wave changes periodically, while the change of this particles velocity is quickened and then becomes random when the spiral wave becomes unstable, which leads to the random decomposition of the velocity group and random distribution of velocity. The system falls into the spatiotemporal chaos finally.-
Keywords:
- lattice Boltzmann method /
- excitable medium /
- spiral wave /
- spatiotemporal chaos
[1] [1]Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134
[2] [2]Wu Y B, Qiao C, Ouyang Q, Wang H L 2008 Phys. Rev. E 77 036226
[3] [3]Ouyang Q 2001 Physics 30 30 (in Chinese)[欧阳颀 2001 物理 30 30]
[4] [4]Yang J Z, Xie F G, Qu Z L, Garfinkel A 2003 Phys. Rev. Lett. 91 148302
[5] [5]Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese)[戴瑜、唐国宁 2009 58 1491]
[6] [6]Zhao Y K, Wang G R, Chen S G 2007 Chin. Phys. 16 1159
[7] [7]Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. B 17 4047
[8] [8]Qian Y H, DHumiéres D, Lallemand P 1992 Euro. Phys. Lett. 17 479
[9] [9]Chen S Y, Chen H D, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776
[10] ]Kang X Y, Ji Y B, Zhang H H, Liu D H, Jin Y J 2007 J. Beijing Norm. Univ. (Nat. Sci. ) 48 508 (in Chinese)[康秀英、吉玉嫔、张焕焕、刘大禾、金永娟 2007 北京师范大学学报(自然科学版) 48 508]
[11] ]Li H B, Fang H P, Lin Z F, Xu S X, Chen S Y 2004 Phys. Rev. E 69 031919
[12] ]Li Q, Zheng C G, Wang N C 2001 Comm. Nonl. Sci. Num. Simu. 6 68
[13] ]Yi H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878
[14] ]Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041
[15] ]Deng M Y, Shi J, Li H B, Kong L J, Liu M R 2007 Acta Phys. Sin. 56 168(in Chinese)[邓敏艺、施娟、李华兵、孔令江、刘慕仁 2007 56 168]
[16] ]Deng M Y, Shi Juan, Chen R X, Kong L J, Liu M R 2007 Coummun. Theor. Phys. 48 725
[17] ]Dutt A K 2005 J. Phys. Chem. B 109 17679
[18] ]Deng M Y, Shi Juan, Li H B, Kong L J, Liu M R 2007 J. 2 GuangXi Norm. Univ. (Nat. Sci. ) 25 10 (in Chinese)[邓敏艺、施娟、李华兵、孔令江、刘慕仁 2007 广西师范大学学报 (自然科学版) 25 10]
-
[1] [1]Zhang H, Hu B, Hu G 2003 Phys. Rev. E 68 026134
[2] [2]Wu Y B, Qiao C, Ouyang Q, Wang H L 2008 Phys. Rev. E 77 036226
[3] [3]Ouyang Q 2001 Physics 30 30 (in Chinese)[欧阳颀 2001 物理 30 30]
[4] [4]Yang J Z, Xie F G, Qu Z L, Garfinkel A 2003 Phys. Rev. Lett. 91 148302
[5] [5]Dai Y, Tang G N 2009 Acta Phys. Sin. 58 1491 (in Chinese)[戴瑜、唐国宁 2009 58 1491]
[6] [6]Zhao Y K, Wang G R, Chen S G 2007 Chin. Phys. 16 1159
[7] [7]Gan Z N, Ma J, Zhang G Y, Chen Y 2008 Chin. Phys. B 17 4047
[8] [8]Qian Y H, DHumiéres D, Lallemand P 1992 Euro. Phys. Lett. 17 479
[9] [9]Chen S Y, Chen H D, Martnez D, Matthaeus W 1991 Phys. Rev. Lett. 67 3776
[10] ]Kang X Y, Ji Y B, Zhang H H, Liu D H, Jin Y J 2007 J. Beijing Norm. Univ. (Nat. Sci. ) 48 508 (in Chinese)[康秀英、吉玉嫔、张焕焕、刘大禾、金永娟 2007 北京师范大学学报(自然科学版) 48 508]
[11] ]Li H B, Fang H P, Lin Z F, Xu S X, Chen S Y 2004 Phys. Rev. E 69 031919
[12] ]Li Q, Zheng C G, Wang N C 2001 Comm. Nonl. Sci. Num. Simu. 6 68
[13] ]Yi H H, Yang X F, Wang C F, Li H B 2009 Chin. Phys. B 18 2878
[14] ]Kang X Y, Ji Y P, Liu D H, Jin Y J 2008 Chin. Phys. B 17 1041
[15] ]Deng M Y, Shi J, Li H B, Kong L J, Liu M R 2007 Acta Phys. Sin. 56 168(in Chinese)[邓敏艺、施娟、李华兵、孔令江、刘慕仁 2007 56 168]
[16] ]Deng M Y, Shi Juan, Chen R X, Kong L J, Liu M R 2007 Coummun. Theor. Phys. 48 725
[17] ]Dutt A K 2005 J. Phys. Chem. B 109 17679
[18] ]Deng M Y, Shi Juan, Li H B, Kong L J, Liu M R 2007 J. 2 GuangXi Norm. Univ. (Nat. Sci. ) 25 10 (in Chinese)[邓敏艺、施娟、李华兵、孔令江、刘慕仁 2007 广西师范大学学报 (自然科学版) 25 10]
计量
- 文章访问数: 8907
- PDF下载量: 1082
- 被引次数: 0