-
通过引入由电感和电阻组成的控制电路模块,并适当选定参数,建立了具有快慢效应的四阶广义Chua电路的模型.探讨了快子系统随慢变量变化产生fold分岔及Hopf分岔的条件,进而探讨了整个系统的动力学演化过程,重点分析了系统中存在的各种快慢效应,给出了两种典型的对称式fold/fold和fold/Hopf周期簇发现象及其相应的分岔机制,从分岔的角度,指出了两种簇发现象的本质区别.
-
关键词:
- 广义Chua电路系统 /
- 簇发 /
- 静息态 /
- 激发态
By introducing the electrical controlling circuit composed of inductance and capacitance, a fourth order model of generalized Chuas circuit with fast-slow effect has been established for certain parameter conditions. The conditions for fold bifurcation as well as Hopf bifurcation of the fast subsystem are investigated with the variation of the slow variable. Furthermore, the dynamical evolution of the entire system is explored, in which the fast-slow effect existing in the system is focused. Two types of bursting phenomenon, namely, the symmetric fold/fold and fold/Hopf periodic bursters, as well as their mechanism, are presented, which discloses the difference between the two burstings from the view point of bifurcation.-
Keywords:
- generalized Chuas circuit /
- bursting /
- quiescent state /
- spiking
[1] [1]Chua L O, Lin G N 1990 IEEE Trans. Circ. Syst. 37 885
[2] [2]Feng C W, Cai L, Kang Q 2008 Acta Phys. Sin. 57 6155 (in Chinese)[冯朝文、蔡理、康强 2008 57 6155]
[3] [3]Luo X S, Wang B H, Chen G R, Jiang P Q, Fang J Q, Quan H J 2002 Acta Phys. Sin. 51 0988(in Chinese)[罗晓曙、汪秉宏、陈关荣、蒋品群、方锦清、全宏俊 2002 51 0988]
[4] [4]Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120(in Chinese)[张朝霞、禹思敏 2009 58 120]
[5] [5]Stouboulos I N, Miliou A N, Valaristos A P, Kyprianidis I M, Anagnostopoulos A N 2007 Chaos Soliton. Fract. 33 1256
[6] [6 ]Hartley T T, Mossayebi F 1989 Proc. Am. Contr. Conf. Pittsburgh 419
[7] [7]Hassan S, Aria A 2008 Math. Comput. Simul. 79 233
[8] [8]Yassen M T 2003 Appl. Math. Comput. 135 113
[9] [9]Thongchai B, Piyapong N 2007 Math. Comput. Simul. 75 37
[10] ]Jun J Y, Jui S L, The L L 2008 Chaos Soliton. Fract. 36 45
[11] ]Yang Z Q, Lu Q H 2008 Sci. Chin. Ser. G 51 687
[12] ]Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
[13] ]Gukenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field (New York: Springer)
[14] ]Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (New York: Springer Verlag)
-
[1] [1]Chua L O, Lin G N 1990 IEEE Trans. Circ. Syst. 37 885
[2] [2]Feng C W, Cai L, Kang Q 2008 Acta Phys. Sin. 57 6155 (in Chinese)[冯朝文、蔡理、康强 2008 57 6155]
[3] [3]Luo X S, Wang B H, Chen G R, Jiang P Q, Fang J Q, Quan H J 2002 Acta Phys. Sin. 51 0988(in Chinese)[罗晓曙、汪秉宏、陈关荣、蒋品群、方锦清、全宏俊 2002 51 0988]
[4] [4]Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120(in Chinese)[张朝霞、禹思敏 2009 58 120]
[5] [5]Stouboulos I N, Miliou A N, Valaristos A P, Kyprianidis I M, Anagnostopoulos A N 2007 Chaos Soliton. Fract. 33 1256
[6] [6 ]Hartley T T, Mossayebi F 1989 Proc. Am. Contr. Conf. Pittsburgh 419
[7] [7]Hassan S, Aria A 2008 Math. Comput. Simul. 79 233
[8] [8]Yassen M T 2003 Appl. Math. Comput. 135 113
[9] [9]Thongchai B, Piyapong N 2007 Math. Comput. Simul. 75 37
[10] ]Jun J Y, Jui S L, The L L 2008 Chaos Soliton. Fract. 36 45
[11] ]Yang Z Q, Lu Q H 2008 Sci. Chin. Ser. G 51 687
[12] ]Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
[13] ]Gukenheimer J, Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field (New York: Springer)
[14] ]Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (New York: Springer Verlag)
计量
- 文章访问数: 9075
- PDF下载量: 1321
- 被引次数: 0