-
利用一个新的变换将变系数KdV-MKdV方程约化为三阶非线性常微分方程(NODE),考虑这个NODE,获得了变系数KdV-MKdV方程的若干精确类孤子解.这种思路也适合于其他的变系数非线性方程,如变系数KP方程、变系数sine-Gordon方程等.In this paper,first,by using a new transformation,the variable coefficient KdV-MKdV equation is reduced to a third-order nonlinear ordinary differential equation (NODE),and then several exact soliton-solutions for the variable coefficient KdV-MKdV equatioin are obtained through considering this NODE.The method can be also used to solve other nonlinear equations,such as the variable coefficient KP equation,sine-Gordon equation and so on.
计量
- 文章访问数: 7457
- PDF下载量: 884
- 被引次数: 0