-
为了获得变系数非线性发展方程的无穷序列复合型新解,研究了[G()]/[G()] 展开法. 通过引入一种函数变换,把常系数二阶齐次线性常微分方程的求解问题转化为一元二次方程和Riccati方程的求解问题. 在此基础上,利用Riccati方程解的非线性叠加公式,获得了常系数二阶齐次线性常微分方程的无穷序列复合型新解. 借助这些复合型新解与符号计算系统Mathematica,构造了带强迫项变系数组合KdV方程的无穷序列复合型类孤子新精确解.
-
关键词:
- [G()]/[G()]展开法 /
- 非线性叠加公式 /
- 带强迫项变系数组合KdV方程 /
- 复合型类孤子新解
The [G()]/[G()] expansion method is extensively studied to search for new infinite sequence of complex solutions to nonlinear evolution equations with variable coefficients. According to a function transformation, the solving of homogeneous linear ordinary differential equation with constant coefficients of second order can be changed into the solving of a one-unknown quadratic equation and the Riccati equation. Based on this, new infinite sequence complex solutions of homogeneous linear ordinary differential equation with constant coefficients of second order are obtained by the nonlinear superposition formula of the solutions to Riccati equation. By means of the new complex solutions, new infinite sequence complex soliton-like exact solutions to the combined KdV equation with variable coefficients and forced term are constructed with the help of symbolic computation system Mathematica.-
Keywords:
- the [G()]/[G()] expansion method /
- nonlinear superposition formula /
- combined KdV equation with variable coefficients and forced term /
- new complex soliton-like solution
[1] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[2] Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497
[3] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137
[4] L Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405
[5] Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585
[6] Li D S, Zhang H Q 2004 Chin. Phys. 13 984
[7] Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143
[8] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767
[9] Yan Z Y, Zhang H Q 1999 Acta. Phys. Sin. 48 1957 (in Chinese) [闫振亚, 张鸿庆 1999 48 1957]
[10] Zhang J F, Chen Y F 2001 Acta. Phys. Sin. 50 1648 (in Chinese) [张解放, 陈芳跃 2001 50 1648]
[11] Li D S, Zhang H Q 2003 Acta. Phys. Sin. 52 1569 (in Chinese) [李德生, 张鸿庆 2003 52 1569]
[12] Liu C S 2005 Acta. Phys. Sin. 54 4506 (in Chinese) [刘成仕 2005 54 4506]
[13] Liu S K, Fu Z T, Liu S D 2002 Acta. Phys. Sin. 51 1923 (in Chinese) [刘式适, 付遵涛, 刘式达 2002 51 1923]
[14] Lu D C, Hong B J, Tian L X 2006 Acta. Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 55 5617]
[15] Mustafa Inca, Esma Ulutas, Anjan Biswasc 2013 Chin. Phys. B 22 060204
[16] Sirendaoreji, Sun J 2003 Phys. Lett. A309 387
[17] Khaled A. Gepreel, Saleh Omran 2012 Chin. Phys. B 21 110204
[18] Zhang S 2007 Phys. Lett. A 368 470
[19] Shi L F, Chen C S, Zhou X C 2011 Chin. Phys. B 20 100507
[20] Qiang J Y, Ma S H, Fang J P 2010 Chin. Phys. B 19 090305
[21] Wang M L 1995 Phys. Lett. A199 169
[22] Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A216 67
[23] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A372 417
[24] Fu Z T, Liu S K, Liu S D 2003 Commun. Theor. Phys. (Beijing, China) 39 27
[25] Liu S K, Chen H, Fu Z T Liu S D 2003 Acta. Phys. Sin. 52 1842 (in Chinese) [刘式适, 陈华, 付遵涛, 刘式达 2003 52 1842]
[26] Ma Y L, Li B Q, Sun J Z 2009 Acta. Phys. Sin. 58 7403 (in Chinese) [马玉兰, 李帮庆, 孙践知 2009 58 7403]
[27] Li B Q, Ma Y L, Xu M P 2010 Acta. Phys. Sin. 59 1409 (in Chinese) [李帮庆, 马玉兰, 徐美萍 2010 59 1409]
[28] Li B Q, Ma Y L 2009 Acta. Phys. Sin. 58 4373(in Chinese) [李帮庆, 马玉兰 2009 58 4373]
[29] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A372 417
[30] Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. (Beijing) 55 949
[31] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. B 19 080303
-
[1] Chen Y, Li B, Zhang H Q 2003 Chin. Phys. 12 940
[2] Chen H T, Zhang H Q 2004 Commun. Theor. Phys. (Beijing) 42 497
[3] Chen Y, Li B, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 137
[4] L Z S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 39 405
[5] Xie F D, Chen J, L Z S 2005 Commun. Theor. Phys. (Beijing) 43 585
[6] Li D S, Zhang H Q 2004 Chin. Phys. 13 984
[7] Li D S, Zhang H Q 2003 Commun. Theor. Phys. (Beijing) 40 143
[8] Ma S H, Fang J P, Zheng C L 2008 Chin. Phys. B 17 2767
[9] Yan Z Y, Zhang H Q 1999 Acta. Phys. Sin. 48 1957 (in Chinese) [闫振亚, 张鸿庆 1999 48 1957]
[10] Zhang J F, Chen Y F 2001 Acta. Phys. Sin. 50 1648 (in Chinese) [张解放, 陈芳跃 2001 50 1648]
[11] Li D S, Zhang H Q 2003 Acta. Phys. Sin. 52 1569 (in Chinese) [李德生, 张鸿庆 2003 52 1569]
[12] Liu C S 2005 Acta. Phys. Sin. 54 4506 (in Chinese) [刘成仕 2005 54 4506]
[13] Liu S K, Fu Z T, Liu S D 2002 Acta. Phys. Sin. 51 1923 (in Chinese) [刘式适, 付遵涛, 刘式达 2002 51 1923]
[14] Lu D C, Hong B J, Tian L X 2006 Acta. Phys. Sin. 55 5617 (in Chinese) [卢殿臣, 洪宝剑, 田立新 2006 55 5617]
[15] Mustafa Inca, Esma Ulutas, Anjan Biswasc 2013 Chin. Phys. B 22 060204
[16] Sirendaoreji, Sun J 2003 Phys. Lett. A309 387
[17] Khaled A. Gepreel, Saleh Omran 2012 Chin. Phys. B 21 110204
[18] Zhang S 2007 Phys. Lett. A 368 470
[19] Shi L F, Chen C S, Zhou X C 2011 Chin. Phys. B 20 100507
[20] Qiang J Y, Ma S H, Fang J P 2010 Chin. Phys. B 19 090305
[21] Wang M L 1995 Phys. Lett. A199 169
[22] Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A216 67
[23] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A372 417
[24] Fu Z T, Liu S K, Liu S D 2003 Commun. Theor. Phys. (Beijing, China) 39 27
[25] Liu S K, Chen H, Fu Z T Liu S D 2003 Acta. Phys. Sin. 52 1842 (in Chinese) [刘式适, 陈华, 付遵涛, 刘式达 2003 52 1842]
[26] Ma Y L, Li B Q, Sun J Z 2009 Acta. Phys. Sin. 58 7403 (in Chinese) [马玉兰, 李帮庆, 孙践知 2009 58 7403]
[27] Li B Q, Ma Y L, Xu M P 2010 Acta. Phys. Sin. 59 1409 (in Chinese) [李帮庆, 马玉兰, 徐美萍 2010 59 1409]
[28] Li B Q, Ma Y L 2009 Acta. Phys. Sin. 58 4373(in Chinese) [李帮庆, 马玉兰 2009 58 4373]
[29] Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A372 417
[30] Taogetusang, Sirendaoerji, Li S M 2011 Commun. Theor. Phys. (Beijing) 55 949
[31] Taogetusang, Sirendaoerji, Li S M 2010 Chin. Phys. B 19 080303
计量
- 文章访问数: 6019
- PDF下载量: 666
- 被引次数: 0