搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析

贺英 王天一 李莹莹

引用本文:
Citation:

线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析

贺英, 王天一, 李莹莹

Composable security analysis of linear optics cloning machine enhanced discretized polar modulation continuous-variable quantum key distribution

He Ying, Wang TianYi, Li YingYing
PDF
导出引用
  • 在连续变量量子密钥分发的实验系统中,由于调制器受限于分辨率有限的驱动电压,理想的高斯调制会退化成离散极化调制,进而引发系统性能的下降。本文提出并研究了线性光学克隆机改进的离散极化调制连续变量量子密钥分发方案。在接收端插入线性光学克隆机能够有效地补偿由幅度和相位离散化产生的综合效应所造成的系统性能损失,实现整体性能的提升。本文推导出了所提方案在非理想外差探测下可组合安全密钥率的表达式,并进行了数值仿真,仿真结果表明所提方案不仅能够通过灵活调谐线性光学克隆机的相关参数优化安全密钥率、提升过量噪声抗性,还能有效克服有限码长效应对安全性的影响,为推动连续变量量子密钥分发的实用化发展提供了切实有效的方法。
    In experimental setups of continuous-variable quantum key distribution (CVQKD) independently modulating the amplitude and phase of coherent states, the ideal Gaussian modulation will be degraded into discretized polar modulation (DPM) due to the finite resolution of the driving voltages of electro-optical modulators. To compensate for the performance degradation induced by the joint effect of amplitude and phase discretization, linear optics cloning machine (LOCM) can be introduced at the receiver side to reduce the impact of channel excess noise. Implemented by linear optical elements, homodyne detection and controlled displacement, LOCM introduces extra noise that can be transformed into an advantageous one to combat channel excess noise by dynamically adjusting the relevant parameters into a suitable range. In this paper, the prepare-and-measure version of LOCM DPM-CVQKD is presented, where the incoming signal state enters a tunable LOCM before being measured by the nonideal heterodyne detector. The equivalent entanglement-based model is also established to perform security analysis, where the LOCM is reformulated into combining the incoming signal state and a thermal state on a beam splitter. The composable secret key rate is derived to investigate the security of LOCM DPM-CVQKD. Simulation results demonstrate that the secret key rate is closely related to the tuning gain and the transmittance of LOCM. Once the two parameters are set to appropriate values, LOCM allows the promotion of the secret key rate of DPM-CVQKD, as well as its resistance to excess noise. Meanwhile, taking finite-size effect into consideration, LOCM can also effectively reduce the requirement for the block size of the exchanged signals, which is beneficial to the feasibility and practicability of CVQKD. Since the performance of LOCM DPM-CVQKD is heavily reliant on the calibrate selection of relevant parameters, further research may concentrate on the optimization of LOCM in experimental implementations, where machine learning related methods may be exploited.
  • [1]

    Portmann C, Renner R 2022Rev. Mod. Phys. 94 025008

    [2]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020Adv. Opt. Photonics 12 1012

    [3]

    Zhang C X, Wu D, Cui P W, Ma J C, Wang Y, An J M 2023 Chinese Phys. B 32 124207

    [4]

    Zapatero V, Navarrete A, Curty, M 2024Adv. Quantum Technol 202300380

    [5]

    Diamanti E, Leverrier A 2015Entropy 17 6072

    [6]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hubel H 2018Adv. Quantum Technol. 1 1800011

    [7]

    Guo H, Li Z, Yu S, Zhang Y C 2021Fundam. Res. 1 96

    [8]

    Zhang Y C, Bian Y M, Li Z Y, Yu S 2024Appl. Phys. Rev.11 011318

    [9]

    Leverrier A 2015Phys. Rev. Lett. 114 070501

    [10]

    Leverrier A 2017Phys. Rev. Lett. 118 200501

    [11]

    Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C; Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S, Guo H 2019Quantum Sci. Technol. 4 035006

    [12]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020Phys. Rev. Lett. 125 010502

    [13]

    Jain N, Chin H M, Mani H, Lupo C, Nikolic D S, Kordts A, Pirandola S, Pedersen T B, Kolb M, Omer B, Pacher C, Gehring T, Andersen U L 2022Nat. Commun. 13 4740

    [14]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024Sci. Adv.10 eadi9474

    [15]

    Wang T, Huang P, Li L, Zhou Y M, Zeng G H 2024New J. Phys. 26 023002

    [16]

    Liao Q, Liu H J, Wang Z, Zhu L J 2023Acta Phys. Sin. 72 040301(in Chinese) [廖骎,柳海杰,王铮,朱凌瑾2023 72 040301]

    [17]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023npj Quantum Inf. 9 28

    [18]

    Zheng Y, Wang Y L, Fang C L, Shi H B, Pan W 2024Phys. Rev. A 109 022424

    [19]

    Zhang G W, Bai J D, Jie Q, Jin J J, Zhang Y M, Liu W Y 2024Acta Phys. Sin. 73 060301(in Chinese) [张光伟,白建东,颉琦,靳晶晶,张永梅,刘文元2024 73 060301]

    [20]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012Phys. Rev. A 86032309

    [21]

    Wu X D, Huang D, Huang P, Guo Y, 2022Acta Phys. Sin. 71 240304(in Chinese) [吴晓东,黄端,黄鹏,郭迎2022 71 240304.]

    [22]

    Zhang Y J, Wang X Y, Zhang Y, Wang N, Jia Y X, Shi Y Q, Lu Z G, Zou J, Li Y M 2024Acta Phys. Sin. 73 060302(in Chinese) [张云杰,王旭阳,张瑜,王宁,贾雁翔,史玉琪,卢振国,邹俊,李永民2024 73 060302]

    [23]

    Lupo C 2020Phys. Rev. A102 022623

    [24]

    Wang T Y, Li M, Wang X 2022Opt. Express 30 36122

    [25]

    Wang T Y, Li M, Wang X, Hou L 2023Opt. Express 31 21014

    [26]

    Guo Y, Lv G, Zeng G H 2015Quantum Inf. Process. 14 4323

    [27]

    Wu X D, Liao Q, Huang D, Wu X H, Guo Y 2017Chinese Phys. B 26 110304

    [28]

    Zhang H, Mao Y, Huang D, Guo Y, Wu X D, Zhang L 2018Chinese Phys. B 27 090307

    [29]

    Yang F L, Qiu D W 2020Quantum Inf. Process. 19 99

    [30]

    He Y, Wang T Y 2024Quantum Inf Process. 23 135

    [31]

    Mao Y Y, Wang Y J, Guo Y, Mao Y H, Huang W T 2021Acta Phys. Sin. 70 110302[毛宜钰,王一军,郭迎,毛堉昊,黄文体2021 70 110302]

    [32]

    Wu X D, Huang D 2023Acta Phys. Sin.72 050303(in Chinese) [吴晓东,黄端2023 72 050303]

    [33]

    Stefano P 2021Phys. Rev. Research 3 013279

    [34]

    Pirandola S 2021Phys. Rev. Research 3 043014

    [35]

    Mountogiannakis A G, Papanastasiou P, Pirandola S 2022Phys. Rev. A 106 042606

    [36]

    Liu J Y, Ding H J, Zhang C M, Xie S P, Wang Q 2019Phys. Rev. Applied 12 014059

    [37]

    Liu J Y, Jiang Q Q, Ding H J, Ma X, Sun M S, Xu J X, Zhang C H, Xie S P, Li J, Zeng G H, Zhou X Y, Wang Q 2023Sci. China Inf. Sci. 66 189402

    [38]

    Zhang Z K, Liu W Q, Qi J, He C, Huang P 2023Phys. Rev. A107 062614

    [39]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021npj Quantum Inf. 7 20

    [40]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024Sci. China Inf. Sci. 67 202501

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , doi: 10.7498/aps.73.20230138
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析.  , doi: 10.7498/aps.73.20241094
    [3] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展.  , doi: 10.7498/aps.71.20220635
    [4] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , doi: 10.7498/aps.71.20212341
    [5] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , doi: 10.7498/aps.71.20221072
    [6] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案.  , doi: 10.7498/aps.70.20200855
    [7] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案.  , doi: 10.7498/aps.70.20202073
    [8] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发.  , doi: 10.7498/aps.69.20191689
    [9] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠.  , doi: 10.7498/aps.68.20181911
    [10] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离.  , doi: 10.7498/aps.62.070301
    [11] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态.  , doi: 10.7498/aps.61.014206
    [12] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , doi: 10.7498/aps.61.154206
    [13] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法.  , doi: 10.7498/aps.58.2184
    [14] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , doi: 10.7498/aps.57.5605
    [15] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , doi: 10.7498/aps.57.4941
    [16] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案.  , doi: 10.7498/aps.57.2212
    [17] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , doi: 10.7498/aps.56.1924
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , doi: 10.7498/aps.56.5243
    [19] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , doi: 10.7498/aps.56.6434
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , doi: 10.7498/aps.56.5
计量
  • 文章访问数:  146
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-01

/

返回文章
返回
Baidu
map