-
Diamond holds significant application potential in microwave and deep-space observation windows due to its exceptionally low dielectric loss. This study aims to systematically investigate the key factors influencing the dielectric loss tangent (tanδ) of single-crystal diamond (SCD) and to establish correlations between its dielectric properties and material characteristics. To this end, dielectric property measurements were performed on SCD samples synthesized using microwave plasma chemical vapor deposition (MPCVD) systems under different growth conditions. A comprehensive material characterization was carried out using birefringence microscopy, Raman spectroscopy, photoluminescence (PL), and X-ray diffraction (XRD) to analyze crystal quality, defect distribution, and strain. The experimental results show that the measured tanδ of the SCD samples reached a minimum value of 4.94 × 10-5. Detailed analysis reveals that the dielectric loss in SCD is attributed to a combination of factors: the density and distribution of internal defects (e.g., vacancies and impurities), the presence of internal growth sectors and boundaries, and phonon polarization losses induced by lattice vibrations under an external electric field. It is conclusively identified that defect density is the predominant factor governing dielectric loss. Furthermore, the study demonstrates that as the test frequency increases, contributions from defect polarization and interfacial polarization at sector boundaries become more pronounced, leading to higher overall loss. Interestingly, it was found that certain periodic defect structures can partially suppress the phonon-polarization related loss mechanism, thereby contributing to a lower tanδ in some samples. In conclusion, this work elucidates the multi-faceted origins of dielectric loss in SCD and provides valuable insights and a methodological framework for guiding the synthesis and processing of diamond crystals with further enhanced dielectric properties for advanced microwave and terahertz applications.
-
Keywords:
- diamond /
- dielectric properties /
- Raman spectroscopy /
- X-ray diffraction
-
[1] Hu X F, Li M, Wang Y N, Peng Y, Tang G B, Wang X W, Li B, Yang Y Q, Xu M S, Xu X G, Han J S, Cheong K Y 2023 Vacuum 211 111895
[2] Kania D R, Landstrass M I, Plano M A, Pan L S, Han S 1993 Diamond Relat. Mater. 2 1012
[3] Boer W D, Bol J, Furgeri A, Müller S, Sander C, Berdermann E, Pomorski M, Huhtinen M 2007 phys. stat. sol. (a) 204 3004
[4] Lu G, Bigelow L K 1992 Diamond Relat. Mater. 1 134
[5] Loto O, Florentin M, Masante C, Donato N, Hicks M L, Pakpour-Tabrizi A C, Jackman R B, Zuerbig V, Godignon P, Eon D, Pernot J, Udrea F, Gheeraert E 2018 IEEE Trans. Electron. Dev. 65 3361
[6] Ren Z Y, Chen W J, Zhang J F, Zhang J C, Zhang C F, Yuan G S, Su K, Lin Z Y, Hao Y 2019 J. Electron Devices Soc. 7 82
[7] Su K, Ren Z Y, Zhang J F, Liu L Y, Zhang J C, Zhang Y C, He Q, Zhang C F, Ouyang X P, Hao Y 2020 Appl. Phys. Lett. 116 092104
[8] Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625
[9] Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A, Walsworth R L 2013 Nature 496 486
[10] Garin B M, Parshin V V, Myasnikova S E, Ralchenko V G 2003 Diamond Relat. Mater. 12 1755
[11] Osipov A S, Klimczyk P, Rutkowski P, Melniychuk Y A, Romanko L O, Podsiadlo M, Petrusha I A, Jaworska L 2021 Mater. Sci. Eng. B 269 115171
[12] Rusevich L L, Kotomin E A, Popov A I, Aiello G, Scherer T A, Lushchik A 2024 Opt. Mater. 150 115222
[13] Scherer T A, Strauss D, Meier A, Mathis Y L, Judin V, Müller-Sebert W, Smirnov W, Nebel C 2011 Materials Research Society Symposium Proceedings (Warrendale, PA: Materials Research Society)p177
[14] Schreck S, Aiello G, Meier A, Strauss D, Gagliardi M, Saibene G, Scherer T 2016 Fusion Eng. Des. 109–111 1232
[15] Ding M Q, Li L, Du Y H, Wu X P, Cai J, Feng J J 2017 Diamond Relat. Mater. 79 173
[16] Wang L, Zhou J H, Li S T, Lu C Y, Li Y F, Li H X, Yang J G, He Y M 2024 J. Fusion Energy 43 1
[17] Liu Y Q, Ding M H, Su J J, Ren H, Lu X R, Tang W Z 2016 Diamond Relat. Mater 73 114.
[18] Cuenca J A, Mandal S, Stritt J, Zheng X, Pomeroy J, Kuball M, Porch A, Williams O A 2024 Carbon 221 118860
[19] Zhu C Z, Du H B 2025 J. Synth. Cryst. 54 531 (in Chinese) [朱长征,杜洪兵 2025 人工晶体学报 54 531]
[20] Yamada H, Meier A, Mazzocchi F, Schreck S, Scherer T 2015 Diamond Relat. Mater. 58 1
[21] Jiang H, Wang J X, Gou L 2024 Diamond Relat. Mater. 149 111642
[22] Courtney W E 1970 IEEE Trans. Microwave Theory Tech. MTT-18 476
[23] Sussmann R S, Brandon J R, Scarsbrook G A, Sweeney C G, Valentine T J, Whitehead A J, Wort C J H 1994 Diamond Relat. Mater. 3 303
[24] Heidinger R, Dammertz G, Meier A, Thumm M K 2002 IEEE Trans. Plasma Sci. 30 800
[25] Chen J D, Liu Z Y 1982 Physics of Dielectrics (Beijing:Mechanical Industry Press) (in Chinese) [陈季丹,刘子玉 1982 电介质物理学 (北京:机械工业出版社)]
[26] Scherer T A, Strauss D, Meier A, Mathis Y L, Judin V, Müller-Sebert W, Smirnov W, Nebel C 2011 Materials Research Society Symposium Proceedings (Warrendale, PA: Materials Research Society)
[27] Guo W J, Ma Z Y, Chen Y G, Lu Y T, Yue Z X 2022 J. Eur. Ceram. Soc. 42 4953
[28] Elliott R J, Krumhansl J A, Leath P L 1974 Rev. Mod. Phys. 46 465
Metrics
- Abstract views: 42
- PDF Downloads: 0
- Cited By: 0









下载: