-
In this study, molecular dynamics simulations were employed to construct seven models of pure aluminum and graphene-reinforced aluminum-based composite nanomaterials (Gr/Al nanocomposites) with 0.5 vol% of 1-3 layers of graphene embedded at 0° and 90° orientations. The aim was to investigate the microscopic deformation behavior of Gr/Al nanocomposites under torsional loading. The simulation results demonstrate that graphene significantly influences the torsional mechanical response of the aluminum matrix: graphene reduces the system's potential energy and smoothens kinetic energy fluctuations through mechanical interlocking and electron-phonon coupling. The composites containing graphene exhibit more intense shear stress fluctuations with higher extreme values. The influence becomes more pronounced with an increase in the number of layers when embedded at 0°, with 3-layer graphene embedded at 0° (3-Gr-0°) showing prominent stress extremes near 540°-610°, indicating that 3-Gr-0° can withstand greater torsional loads.
Further research reveals that graphene embedding disrupts both the short-range and long-range orderliness of aluminum atoms, with the 0° orientation exerting a stronger disruptive effect than the 90° orientation, and an increase in the number of layers exacerbating this effect. The proportion of FCC (face-centered cubic) structures decreases with increasing torsional angles, with a more pronounced reduction in structural stability observed at 90° orientation and with an increase in the number of layers. Analysis of dislocations and stacking faults indicates that graphene hinders dislocation propagation, increasing the angle at which initial dislocations appear. During torsion, Shockley partial dislocations dominate, with the 90° orientation of graphene more prone to triggering dislocation reactions, while the 0° orientation more significantly obstructs dislocation propagation. After graphene reinforcement, the generation of intrinsic stacking faults (ISFs) within the composites requires a larger torsional angle, and the reduction in stacking fault energy facilitates dislocation decomposition. The 3-Gr-0° configuration predominantly features Shockley partial dislocations, with a moderate dislocation pile-up effect and a higher threshold for ISF generation. This study provides a theoretical reference for the structural design and performance optimization of such composites.-
Keywords:
- Graphene /
- Aluminum-based nanocomposite /
- Molecular dynamics /
- Torsional simulation
-
[1] Guo X X 2022 M.S. Thesis (Xian: Northwestern Polytechnical University) (in Chinese)[郭 刘欣 2022 硕士学位论文 (西安: 西北工业大学)]
[2] Song J, Zhang Q, Yao S, Yang K, Ma H, Ni J M, Zhong B A, Liu Y, Wang J, Fan T X 2024 Acta Mater. 263 119414.
[3] Pradhan S K, Kabiraj S, Gupta S K, Singh A, Chavan P G, Patil S S, Pandey T N 2025 Sci Rep-Uk. 15 26416.
[4] Peng Y, Luo G, Hu Y, Xiong D B 2023 Acta Mater. 252 118941.
[5] Bisht A, Srivastava M, Kumar R M, Lahiri I, Lahiri D 2017 Mater. Sci. Eng. A 695 20.
[6] Tabandeh-Khorshid M, Kumar A, Omrani E, Chngsoo Kim, Pradeep R 2020 Comp. Part. B 183 107664.
[7] Andrei E Y, MacDonald A H 2020 Nat Mater. 19 1265.
[8] Rajendren V B, Abdullah M R, Ahmad F, Khan S U, Dar S M, Kai X Z, Zhao Y T 2025 Compos. Interface. 32 713
[9] Li M Y, Li X J, Shi H L, Xu W Q, Chi F H, Hu X S, Xu C, Fan G H, Wang X J 2025 J. Alloy.Compd. 1010 177498.
[10] Yan Y, Lei Y, Liu S 2018 Comp. Mater. Sci. 151 273
[11] Yu J N, Wang L D, Shao B, Zong Y Y 2024 J. Alloy. Compd. 988 174142
[12] Chen B, Kondoh K, Umeda J, Li S, Jia L, Li J 2019 J. Alloy. Compd. 789 25
[13] Zhao Z, Bai P, Du W, Liu B, Pan D, Das R, Liu C, Guo Z 2020 Carbon 170 302
[14] Naseer A, Ahmad F, Aslam M, Guan B H, Harun W S W M N, German R M 2019 Mater. Manuf. Process. 34 957
[15] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282
[16] Qiu C H, Su Y S, Yang J Y, Wang X S, Chen B Y, Ouyang Q B, Zhang D 2021 Compos. Part B-Eng. 41 3677
[17] Ming Z F, Song H Y, An M R 2022 Acta Phys. Sin. 71 266-274 (in Chinese)[明知非, 宋海 洋, 安敏荣 2022 71 266]
[18] Ou B X, Yan J X, Wang Q S, Lu L X 2022 Molecules. 27 905
[19] Li J W, Guo J G, Zhou L J 2023 Phys. E 47 115597
[20] Geng Y, Zhang X, Zheng Y, Zheng Y F, Li Z 2025 Nat Commun. 16 6804.
[21] Das D K, Kumar B 2025 Diam. Relat. Mater. 152 111981
[22] Guo Y M, Yi D Q, Liu H Q, Wang B, Bo J 2020 J. Mater. Sci. 55 3314
[23] Azizi Z, Rahmani K, Taheri-Behrooz F 2022 Metals-Basel. 12 1883.
[24] Wang X, Xiao W, Wang L, Shi J, Sun L, Cui J, Wang J 2020 Phys. E 123 114172
[25] Zhu J Q, Liu X, Yang Q S 2019 Comp. Mater. Sci. 160 72
[26] Peng W, Sun K 2020 Mech. Mater. 141 103270
[27] Plimpton S 1995 J Comput Phys. 117 1
[28] Polyakova P V, Nazarov K S, Khisamov R K, Baimova J A 2020 J. Phys. Conf. 1435 1265
[29] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[30] Wang P, Yang X, Tian X 2015 J. Mater. Res. 30 709
[31] Hoover W G 1986 Phys Rev A. 34 2499
[32] Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251
[33] Mendelev M I, Kramer M J, Becker C A, Asta M 2008 Philos. Mag. 88 1723
[34] Stuart S J, Tutein A B, Harrison J A 2000 J Chem Phys. 112 6472
[35] Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591
[36] Fan P, Goel S, Luo X, Yan Y, Geng Y, He Y 2021 Appl. Surf. Sci. 552 149489
[37] Stukowski A 2009 Model. Simul. Mater. Sc. 18 015012
[38] Jian W, Xie Z, Xu S, Su Y, Yao X, Beyerlein I J 2020 Acta Mater.199 352
[39] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sc. 20 085007
[40] Jin K, Wang H, Tao J, Zhang X 2019 Compos. B Eng. 171 254
[41] Cheng C, Duan M Y, Wang Z, Zhou X L 2020 Philos. Mag. 100 2275
[42] Xing C, Sheng J, Wang L, Fei W 2021 Oxf. Open. Mater. Sci. 1 itab008
[43] Yu X X, Li D S, Ye Y, Lang W C, Liu J H, Chen J S, Yu S S 2024 Acta Phys. Sin. 73 237 (in Chinese)[余欣秀,李多生,叶寅, 郎文昌, 刘俊红, 陈劲松, 于爽爽 2024 73 237]
[44] Tang J, Ahmadi A, Alizadeh A, Abedinzadeh R, Abed A M, Smaisim G F, Hadrawi S K,Nasajpour-Esfahani N, Toghraie D 2023 J. Mater. Res. Technol. 24 1390
[45] Wang W Y, Tang B, Shang S L, Wang J W, Li S L, Wang Y, Zhu J, Wei S Y, Wang J, Darling K A, Mathaudhu S N, Wang Y G, Ren Y, Hui X D, Kecskes L J, Li J S, Liu Z K 2019 Acta Mater. 170 231
[46] Zhu S Q, Ringer S P 2018 Acta Mater. 144 365
[47] Li J W, Guo J G, Zhou L J 2023 Phys. E 147 115597
[48] Fan S, Yu Q, Peng M, Bu H Y, Zhou X L, Li J, Duan Y H, Li M N 2025 J. Mater. Res. Technol. 36 5018
[49] Sun R X 2024 M.S. Thesis (Harbin: Harbin Engineering University) (in Chinese)[孙睿雪 2024 硕士学位论文(哈尔滨: 哈尔滨工程大学)]
[50] Chen S Y, Wang Q, Liu X M, Tao J M, Wang M L, Wang H W 2020 Mater. Today. Commun. 24 101085.
Metrics
- Abstract views: 47
- PDF Downloads: 0
- Cited By: 0









下载: