Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum Monte Carlo study of the interplay between spin stripe order and superconductivity in a two-orbital Hubbard model of cuprates

FANG Shichao ZHU Jiarui

Citation:

Quantum Monte Carlo study of the interplay between spin stripe order and superconductivity in a two-orbital Hubbard model of cuprates

FANG Shichao, ZHU Jiarui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • To clarify the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and to elucidate the relationship between spin stripe order and superconductivity, we employ large-scale, unbiased constrained-path quantum Monte Carlo simulations based on a two-orbital Hubbard model for copper oxides. We investigate the influence of the Cu d3z2-r2 orbital on the superconducting properties and spin stripe order in two prototypical cuprates, LSCO and HBCO.
    First, within square lattice models of sizes 8 × 8 and 16 × 16, we examine the effect of the Cu d3z2-r2 orbital on superconductivity. By exploiting the differences in orbital energy-level separations among different cuprate materials, our numerical results demonstrate that, compared with LSCO, HBCO exhibits a significantly stronger enhancement in both the pairing correlation function and the effective pairing correlation function associated with d-wave superconducting symmetry. This result indicates that the higher superconducting transition temperature of HBCO relative to LSCO is closely related to the role of the Cu d3z2-r2 orbital.
    Second, considering that spin stripe order spontaneously breaks the rotational symmetry of the lattice and forms unidirectional, periodically modulated spin-density structures whose periodicity is generally incompatible with that of a square lattice, conventional periodic boundary conditions cannot accurately capture the intrinsic anisotropy of spin stripe order. To overcome this limitation, rectangular lattices are employed in our numerical simulations to describe the spin stripe configurations. This choice allows multiple stripe periods to be accommodated along the transverse direction, thereby faithfully capturing the spontaneously formed spin stripe structures in the electronic spin distribution and enabling a reliable analysis of their interplay with superconductivity. Based on this approach, we investigate the formation of spin stripe order in LSCO and HBCO using a 16 × 4 rectangular lattice. The numerical results show that LSCO develops relatively long single-domain spin stripes, whereas HBCO exhibits periodic spin stripe structures consisting of multiple domains. These findings indicate that LSCO hosts locally ordered spin stripes, while HBCO supports nonlocal, long-range ordered spin stripe order. More importantly, the pairing correlation and effective pairing correlation functions associated with d-wave superconductivity in HBCO retain a pronounced long-range enhancement, demonstrating that long-range ordered spin stripes are beneficial for enhancing superconductivity. This result reveals a cooperative interplay between spin stripe order and superconductivity.
    Taken together, these results not only provide insight into the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and the correlations between different ordered phases, but also demonstrate that the Cu d3z2-r2 orbital plays a crucial role in tuning superconductivity and spin fluctuations in cuprate materials. Our study thus offers a new theoretical perspective for exploring strongly correlated cuprate systems.
  • [1]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239

    [2]

    Norman M R 2011 Science 332 196

    [3]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [4]

    Stewart G R 2017 Advances in Physics 66 75

    [5]

    Cooper L N 1956 Phys. Rev. 104 1189

    [6]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [7]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Hu J P, 胡江平 2021 Acta Physica Sinica ( ) 70 017101. (in Chinese)

    [10]

    Hu J 2016 Science Bulletin 61 561

    [11]

    Maier T, Jarrell M, Pruschke T, Keller J 2000 Phys. Rev. Lett. 85 1524

    [12]

    Halboth C J, Metzner W 2000 Phys. Rev. Lett. 85 5162

    [13]

    Lichtenstein A I, Katsnelson M I 2000 Phys. Rev. B 62 R9283

    [14]

    Foley A, Verret S, Tremblay A M S, Sénéchal D 2019 Phys. Rev. B 99 184510

    [15]

    Guerrero M, Gubernatis J E, Zhang S 1998 Phys. Rev. B 57 11980

    [16]

    Kent P R C, Saha-Dasgupta T, Jepsen O, Andersen O K, Macridin A, Maier T A, Jarrell M, Schulthess T C 2008 Phys. Rev. B 78 035132

    [17]

    Vitali E, Shi H, Chiciak A, Zhang S 2019 Phys. Rev. B 99 165116

    [18]

    Cui Z H, Sun C, Ray U, Zheng B X, Sun Q, Chan G K L 2020 Phys. Rev. Res. 2 043259

    [19]

    Jorgensen J D, Schüttler H B, Hinks D G, Capone II D W, Zhang K, Brodsky M B, Scalapino D J 1987 Phys. Rev. Lett. 58 1024

    [20]

    Tarascon J M, Greene L H, McKinnon W R, Hull G W, Geballe T H 1987 Science 235 1373

    [21]

    Li Y, Balédent V, Barišić N, Cho Y, Fauqué B, Sidis Y, Yu G, Zhao X, Bourges P, Greven M 2008 Nature 455 372

    [22]

    Aksenov V L, Balagurov A M, Sikolenko V V, Simkin V G, Alyoshin V A, Antipov E V, Gippius A A, Mikhailova D A, Putilin S N, Bouree F 1997 Phys. Rev. B 55 3966

    [23]

    Li W M, Zhao J F, Cao L P, Hu Z, Huang Q Z, Wang X C, Liu Y, Zhao G Q, Zhang J, Liu Q Q, Yu R Z, Long Y W, Wu H, Lin H J, Chen C T, Li Z, Gong Z Z, Guguchia Z, Kim J S, Stewart G R, Uemura Y J, Uchida S, Jin C Q 2019 Proceedings of the National Academy of Sciences 116 12156

    [24]

    Fumagalli R, Nag A, Agrestini S, Garcia-Fernandez M, Walters A C, Betto D, Brookes N B, Braicovich L, Zhou K J, Ghiringhelli G, Moretti Sala M 2021 Physica C: Superconductivity and its Applications 581 1353810

    [25]

    Sakakibara H, Suzuki K, Usui H, Miyao S, Maruyama I, Kusakabe K, Arita R, Aoki H, Kuroki K 2014 Phys. Rev. B 89 224505

    [26]

    Kordyuk A A 2015 Low Temperature Physics 41 319

    [27]

    Valla T, Fedorov A V, Lee J, Davis J C, Gu G D 2006 Science 314 1914

    [28]

    Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H, Bonn D A, Liang R, Hardy W N, Islam Z, Mehta A, Song S, Sikorski M, Stefanescu D, Feng Y, Kivelson S A, Devereaux T P, Shen Z X, Kao C C, Lee W S, Zhu D, Lee J S 2015 Science 350 949

    [29]

    Comin R, Damascelli A 2016 Annual Review of Condensed Matter Physics 7 369

    [30]

    Parker C V, Aynajian P, da Silva Neto E H, Pushp A, Ono S, Wen J, Xu Z, Gu G, Yazdani A 2010 Nature 468 677

    [31]

    He R H, Hashimoto M, Karapetyan H, Koralek J D, Hinton J P, Testaud J P, Nathan V, Yoshida Y, Yao H, Tanaka K, Meevasana W, Moore R G, Lu D H, Mo S K, Ishikado M, Eisaki H, Hussain Z, Devereaux T P, Kivelson S A, Orenstein J, Kapitulnik A, Shen Z X 2011 Science 331 1579

    [32]

    Wang Z, Xu J, Li H, Fan S, Yang H, Wen H H 2025 Phys. Rev. B 112 064502

    [33]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [34]

    Daou R, Chang J, LeBoeuf D, Cyr-Choiniere O, Laliberté F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [35]

    Hinkov V, Haug D, Fauqué B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [36]

    Vojta M 2009 Advances in Physics 58 699

    [37]

    Poilblanc D, Rice T M 1989 Phys. Rev. B 39 9749

    [38]

    Zaanen J, Gunnarsson O 1989 Phys. Rev. B 40 7391

    [39]

    White S R, Scalapino D J 2003 Phys. Rev. Lett. 91 136403

    [40]

    Hager G, Wellein G, Jeckelmann E, Fehske H 2005 Phys. Rev. B 71 075108

    [41]

    Corboz P, Rice T M, Troyer M 2014 Phys. Rev. Lett. 113 046402

    [42]

    Chang C C, Zhang S 2010 Phys. Rev. Lett. 104 116402

    [43]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155

    [44]

    Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161

    [45]

    Huang E W, Mendl C B, Jiang H C, Moritz B, Devereaux T P 2018 npj Quantum Materials 3 22

    [46]

    Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2010 Phys. Rev. Lett. 105 057003

    [47]

    Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2012 Phys. Rev. B 85 064501

    [48]

    Maier T, Berlijn T, Scalapino D J 2019 Phys. Rev. B 99 224515

    [49]

    Jiang K, Wu X, Hu J, Wang Z 2018 Phys. Rev. Lett. 121 227002

    [50]

    Ying T, Wessel S 2018 Phys. Rev. B 97 075127

    [51]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135

    [52]

    Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics: Condensed Matter 33 025601

    [53]

    Trotter H F 1959 Proceedings of the American Mathematical Society 10 545

    [54]

    Suzuki M 1976 Communications in Mathematical Physics 51 183

    [55]

    Hirsch J E 1983 Phys. Rev. B 28 4059

    [56]

    Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 55 7464

    [57]

    Liu G, Kaushal N, Li S, Bishop C B, Wang Y, Johnston S, Alvarez G, Moreo A, Dagotto E 2016 Phys. Rev. E 93 063313

    [58]

    Shi H, Zhang S 2013 Phys. Rev. B 88 125132

    [59]

    Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89 125129

    [60]

    Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94 085140

    [61]

    Fang S C, Liao X Y, 方世超, 廖心怡 2025 Acta Physica Sinica ( ) 74 120201. (in Chinese)

    [62]

    Kondo T, Khasanov R, Takeuchi T, Schmalian J, Kaminski A 2009 Nature 457 296

    [63]

    Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D A, Hardy W N, Watenphul A, v Zimmermann M, Forgan E M, Hayden S M 2012 Nature Physics 8 871

    [64]

    Wang Y, Agterberg D F, Chubukov A 2015 Phys. Rev. B 91 115103

    [65]

    Chan C 2016 Phys. Rev. B 93 184514

    [66]

    Chakraborty D, Grandadam M, Hamidian M H, Davis J C S, Sidis Y, Pépin C 2019 Phys. Rev. B 100 224511

    [67]

    Agterberg D F, Davis J S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annual Review of Condensed Matter Physics 11 231

    [68]

    Imada M 2021 Journal of the Physical Society of Japan 90 111009

    [69]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [70]

    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C, Hardy W N, Liang R, Bonn D A, Julien M H 2011 Nature 477 191

    [71]

    Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534

    [72]

    Hayden S M, Mook H A, Dai P, Perring T G, Dogan F 2004 Nature 429 531

  • [1] FANG Shichao, LIAO Xinyi. Quantum Monte Carlo study of magnetism and chiral ${\mathrm{d}}+{\mathrm{id}} $-wave superconducivity in twisted bilayer graphene. Acta Physica Sinica, doi: 10.7498/aps.74.20250305
    [2] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, doi: 10.7498/aps.72.20231321
    [3] Tang Jie, Shi Lei, Wei Jia-Hua, Yu Hui-Cun, Xue Yang, Wu Tian-Xiong. Multi-party quantum key agreement based on d-level GHZ states. Acta Physica Sinica, doi: 10.7498/aps.69.20200799
    [4] Jiao Jing-Pin, Li Hai-Ping, He Cun-Fu, Wu Bin, Xue Yan. Lamb wave imaging method based on difference signal in reverse path. Acta Physica Sinica, doi: 10.7498/aps.68.20190101
    [5] Dong Xiao-Li, Jin Kui, Yuan Jie, Zhou Fang, Zhang Guang-Ming, Zhao Zhong-Xian. New progress of FeSe-based superconducting single crystals and films: Spin nematicity, electronic phase separation, and high critical parameters. Acta Physica Sinica, doi: 10.7498/aps.67.20181638
    [6] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181543
    [7] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, doi: 10.7498/aps.65.223207
    [8] Chen Jun, Yu Ya-Fei, Zhang Zhi-Ming. Optimizing quantum state transfer in multi-excitation spin chains via information flux. Acta Physica Sinica, doi: 10.7498/aps.64.160305
    [9] Jin Xia, Dong Zheng-Chao, Liang Zhi-Peng, Zhong Chong-Gui. Josephson effect in ferromagnetic d-wave superconductor/ferromagnet/ferromagnetic d-wave superconductor junctions. Acta Physica Sinica, doi: 10.7498/aps.62.047401
    [10] Wang Gui-Ying, Guo Huan-Yin, Mao Qiang, Yang Gang, Peng Zhen-Sheng. Effects of V substitution for Mn on charge ordering and spin-glass state in La0.45Ca0.55MnO3 sample. Acta Physica Sinica, doi: 10.7498/aps.59.8883
    [11] Zhao Xing-Wen, Cheng Xin-Lu, Zhang Hong. Path integral Monte Carlo simulations for pair correlation function for liquid 4He systems. Acta Physica Sinica, doi: 10.7498/aps.59.482
    [12] Dong Zheng-Chao. Spin-polarized transport in ferromagnetic semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, doi: 10.7498/aps.57.5937
    [13] Li Xiao-Wei, Liu Shu-Jing. Tunneling conductance anomalies in normal metal/triplet superconductor junction. Acta Physica Sinica, doi: 10.7498/aps.55.834
    [14] Li Xiao-Wei. The dc Josephson current in superconductor-ferromagnet/insulator/spin-triplet p-wave superconductor junctions. Acta Physica Sinica, doi: 10.7498/aps.55.6637
    [15] Yang Zi-Yuan. Microscopic origins of the spin-Hamiltonian parameters for 3d2 state ions in a crystal. Acta Physica Sinica, doi: 10.7498/aps.53.1981
    [16] Dong Zheng-Chao. . Acta Physica Sinica, doi: 10.7498/aps.51.894
    [17] DONG ZHENG-CHAO. EFFECTS OF INTERFACE ROUGHNESS AND SPIN-FLIP ON TUNNELSPECTRUM IN FERROMAGNET-d-WAVE SUPERCONDUCTOR JUNCTIONS. Acta Physica Sinica, doi: 10.7498/aps.50.1779
    [18] . Acta Physica Sinica, doi: 10.7498/aps.49.339
    [19] DU SHENG-WANG, DAI YUAN-DONG, WANG SHI-GUANG. TO PROBE THE PHASE OF THE ORDER PARAMETER IN HIGH-TEMPERATURE SUPERCONDUCTORS BY USING r.f. SQUID. Acta Physica Sinica, doi: 10.7498/aps.48.2364
    [20] DONG ZHENG-CHAO. MAGNETIC SCATTERING EFFECT ON QUANTUM TRANSPORT IN THE NORMAL METAL FERROMAGNET INSULATOR-d WAVE SUPERCONDUCTOR JUNCTIONS. Acta Physica Sinica, doi: 10.7498/aps.48.2357
Metrics
  • Abstract views:  60
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  05 January 2026
  • /

    返回文章
    返回
    Baidu
    map