-
To clarify the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and to elucidate the relationship between spin stripe order and superconductivity, we employ large-scale, unbiased constrained-path quantum Monte Carlo simulations based on a two-orbital Hubbard model for copper oxides. We investigate the influence of the Cu d3z2-r2 orbital on the superconducting properties and spin stripe order in two prototypical cuprates, LSCO and HBCO.
First, within square lattice models of sizes 8 × 8 and 16 × 16, we examine the effect of the Cu d3z2-r2 orbital on superconductivity. By exploiting the differences in orbital energy-level separations among different cuprate materials, our numerical results demonstrate that, compared with LSCO, HBCO exhibits a significantly stronger enhancement in both the pairing correlation function and the effective pairing correlation function associated with d-wave superconducting symmetry. This result indicates that the higher superconducting transition temperature of HBCO relative to LSCO is closely related to the role of the Cu d3z2-r2 orbital.
Second, considering that spin stripe order spontaneously breaks the rotational symmetry of the lattice and forms unidirectional, periodically modulated spin-density structures whose periodicity is generally incompatible with that of a square lattice, conventional periodic boundary conditions cannot accurately capture the intrinsic anisotropy of spin stripe order. To overcome this limitation, rectangular lattices are employed in our numerical simulations to describe the spin stripe configurations. This choice allows multiple stripe periods to be accommodated along the transverse direction, thereby faithfully capturing the spontaneously formed spin stripe structures in the electronic spin distribution and enabling a reliable analysis of their interplay with superconductivity. Based on this approach, we investigate the formation of spin stripe order in LSCO and HBCO using a 16 × 4 rectangular lattice. The numerical results show that LSCO develops relatively long single-domain spin stripes, whereas HBCO exhibits periodic spin stripe structures consisting of multiple domains. These findings indicate that LSCO hosts locally ordered spin stripes, while HBCO supports nonlocal, long-range ordered spin stripe order. More importantly, the pairing correlation and effective pairing correlation functions associated with d-wave superconductivity in HBCO retain a pronounced long-range enhancement, demonstrating that long-range ordered spin stripes are beneficial for enhancing superconductivity. This result reveals a cooperative interplay between spin stripe order and superconductivity.
Taken together, these results not only provide insight into the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and the correlations between different ordered phases, but also demonstrate that the Cu d3z2-r2 orbital plays a crucial role in tuning superconductivity and spin fluctuations in cuprate materials. Our study thus offers a new theoretical perspective for exploring strongly correlated cuprate systems.-
Keywords:
- d-wave superconducting state /
- Spin stripe order /
- Constrained-path quantum Monte Carlo method
-
[1] Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239
[2] Norman M R 2011 Science 332 196
[3] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[4] Stewart G R 2017 Advances in Physics 66 75
[5] Cooper L N 1956 Phys. Rev. 104 1189
[6] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
[7] Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969
[8] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473
[9] Hu J P, 胡江平 2021 Acta Physica Sinica ( ) 70 017101. (in Chinese)
[10] Hu J 2016 Science Bulletin 61 561
[11] Maier T, Jarrell M, Pruschke T, Keller J 2000 Phys. Rev. Lett. 85 1524
[12] Halboth C J, Metzner W 2000 Phys. Rev. Lett. 85 5162
[13] Lichtenstein A I, Katsnelson M I 2000 Phys. Rev. B 62 R9283
[14] Foley A, Verret S, Tremblay A M S, Sénéchal D 2019 Phys. Rev. B 99 184510
[15] Guerrero M, Gubernatis J E, Zhang S 1998 Phys. Rev. B 57 11980
[16] Kent P R C, Saha-Dasgupta T, Jepsen O, Andersen O K, Macridin A, Maier T A, Jarrell M, Schulthess T C 2008 Phys. Rev. B 78 035132
[17] Vitali E, Shi H, Chiciak A, Zhang S 2019 Phys. Rev. B 99 165116
[18] Cui Z H, Sun C, Ray U, Zheng B X, Sun Q, Chan G K L 2020 Phys. Rev. Res. 2 043259
[19] Jorgensen J D, Schüttler H B, Hinks D G, Capone II D W, Zhang K, Brodsky M B, Scalapino D J 1987 Phys. Rev. Lett. 58 1024
[20] Tarascon J M, Greene L H, McKinnon W R, Hull G W, Geballe T H 1987 Science 235 1373
[21] Li Y, Balédent V, Barišić N, Cho Y, Fauqué B, Sidis Y, Yu G, Zhao X, Bourges P, Greven M 2008 Nature 455 372
[22] Aksenov V L, Balagurov A M, Sikolenko V V, Simkin V G, Alyoshin V A, Antipov E V, Gippius A A, Mikhailova D A, Putilin S N, Bouree F 1997 Phys. Rev. B 55 3966
[23] Li W M, Zhao J F, Cao L P, Hu Z, Huang Q Z, Wang X C, Liu Y, Zhao G Q, Zhang J, Liu Q Q, Yu R Z, Long Y W, Wu H, Lin H J, Chen C T, Li Z, Gong Z Z, Guguchia Z, Kim J S, Stewart G R, Uemura Y J, Uchida S, Jin C Q 2019 Proceedings of the National Academy of Sciences 116 12156
[24] Fumagalli R, Nag A, Agrestini S, Garcia-Fernandez M, Walters A C, Betto D, Brookes N B, Braicovich L, Zhou K J, Ghiringhelli G, Moretti Sala M 2021 Physica C: Superconductivity and its Applications 581 1353810
[25] Sakakibara H, Suzuki K, Usui H, Miyao S, Maruyama I, Kusakabe K, Arita R, Aoki H, Kuroki K 2014 Phys. Rev. B 89 224505
[26] Kordyuk A A 2015 Low Temperature Physics 41 319
[27] Valla T, Fedorov A V, Lee J, Davis J C, Gu G D 2006 Science 314 1914
[28] Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H, Bonn D A, Liang R, Hardy W N, Islam Z, Mehta A, Song S, Sikorski M, Stefanescu D, Feng Y, Kivelson S A, Devereaux T P, Shen Z X, Kao C C, Lee W S, Zhu D, Lee J S 2015 Science 350 949
[29] Comin R, Damascelli A 2016 Annual Review of Condensed Matter Physics 7 369
[30] Parker C V, Aynajian P, da Silva Neto E H, Pushp A, Ono S, Wen J, Xu Z, Gu G, Yazdani A 2010 Nature 468 677
[31] He R H, Hashimoto M, Karapetyan H, Koralek J D, Hinton J P, Testaud J P, Nathan V, Yoshida Y, Yao H, Tanaka K, Meevasana W, Moore R G, Lu D H, Mo S K, Ishikado M, Eisaki H, Hussain Z, Devereaux T P, Kivelson S A, Orenstein J, Kapitulnik A, Shen Z X 2011 Science 331 1579
[32] Wang Z, Xu J, Li H, Fan S, Yang H, Wen H H 2025 Phys. Rev. B 112 064502
[33] Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005
[34] Daou R, Chang J, LeBoeuf D, Cyr-Choiniere O, Laliberté F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519
[35] Hinkov V, Haug D, Fauqué B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597
[36] Vojta M 2009 Advances in Physics 58 699
[37] Poilblanc D, Rice T M 1989 Phys. Rev. B 39 9749
[38] Zaanen J, Gunnarsson O 1989 Phys. Rev. B 40 7391
[39] White S R, Scalapino D J 2003 Phys. Rev. Lett. 91 136403
[40] Hager G, Wellein G, Jeckelmann E, Fehske H 2005 Phys. Rev. B 71 075108
[41] Corboz P, Rice T M, Troyer M 2014 Phys. Rev. Lett. 113 046402
[42] Chang C C, Zhang S 2010 Phys. Rev. Lett. 104 116402
[43] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155
[44] Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161
[45] Huang E W, Mendl C B, Jiang H C, Moritz B, Devereaux T P 2018 npj Quantum Materials 3 22
[46] Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2010 Phys. Rev. Lett. 105 057003
[47] Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2012 Phys. Rev. B 85 064501
[48] Maier T, Berlijn T, Scalapino D J 2019 Phys. Rev. B 99 224515
[49] Jiang K, Wu X, Hu J, Wang Z 2018 Phys. Rev. Lett. 121 227002
[50] Ying T, Wessel S 2018 Phys. Rev. B 97 075127
[51] Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135
[52] Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics: Condensed Matter 33 025601
[53] Trotter H F 1959 Proceedings of the American Mathematical Society 10 545
[54] Suzuki M 1976 Communications in Mathematical Physics 51 183
[55] Hirsch J E 1983 Phys. Rev. B 28 4059
[56] Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 55 7464
[57] Liu G, Kaushal N, Li S, Bishop C B, Wang Y, Johnston S, Alvarez G, Moreo A, Dagotto E 2016 Phys. Rev. E 93 063313
[58] Shi H, Zhang S 2013 Phys. Rev. B 88 125132
[59] Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89 125129
[60] Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94 085140
[61] Fang S C, Liao X Y, 方世超, 廖心怡 2025 Acta Physica Sinica ( ) 74 120201. (in Chinese)
[62] Kondo T, Khasanov R, Takeuchi T, Schmalian J, Kaminski A 2009 Nature 457 296
[63] Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D A, Hardy W N, Watenphul A, v Zimmermann M, Forgan E M, Hayden S M 2012 Nature Physics 8 871
[64] Wang Y, Agterberg D F, Chubukov A 2015 Phys. Rev. B 91 115103
[65] Chan C 2016 Phys. Rev. B 93 184514
[66] Chakraborty D, Grandadam M, Hamidian M H, Davis J C S, Sidis Y, Pépin C 2019 Phys. Rev. B 100 224511
[67] Agterberg D F, Davis J S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annual Review of Condensed Matter Physics 11 231
[68] Imada M 2021 Journal of the Physical Society of Japan 90 111009
[69] Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561
[70] Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C, Hardy W N, Liang R, Bonn D A, Julien M H 2011 Nature 477 191
[71] Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534
[72] Hayden S M, Mook H A, Dai P, Perring T G, Dogan F 2004 Nature 429 531
Metrics
- Abstract views: 60
- PDF Downloads: 1
- Cited By: 0









下载: