Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lattice-induced dual transparency in terahertz hybrid metasurfaces

HOU Yunfei WANG Wenxian ZHANG Yigong XIONG Lei

Citation:

Lattice-induced dual transparency in terahertz hybrid metasurfaces

HOU Yunfei, WANG Wenxian, ZHANG Yigong XIONG Lei,
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The phenomenon of electromagnetically induced transparency (EIT)-like in terahertz (THz) metasurfaces facilitates agile manipulation of electromagnetic wave transmission windows and the deceleration of light, rendering it suitable for applications in modulators, absorbers, slow light devices, and more. Traditional design methodologies focus on the coupling between bright-dark modes and bright-bright modes within the unit cell, leveraging interference cancellation effects to regulate electromagnetic wave transmission. Notably, the periodicity of the array structure also plays a pivotal role in modulating the amplitude and resonance intensity of the transparent window, a phenomenon termed lattice-induced transparency (LIT). In this paper, we introduce a gold nanorod structure and an S-shaped gold split-ring resonator supported on a vanadium dioxide (VO2) thin film to investigate LIT. Unlike conventional structures that solely consider single bright-bright or bright-dark mode coupling, our proposed structure incorporates both bright-bright and bright-dark modes coupling. Furthermore, the dark mode in our structure is not a conventional multipolar mode but rather a surface lattice resonance (SLR) arising from the coupling between lattice modes and the localized surface plasmon resonance (LSPR) of the structure itself.
    Through the analysis of simulated transmission spectra for the individual gold nanorod and S-shaped split-ring structures, we observed that the gold nanorod exhibits LSPR at 0.985 THz, whereas the S-shaped split-ring structure demonstrates LSPR and SLR at 0.51 THz and 1.025 THz, respectively. When combined, these structures form transparent windows with transmission rates of 66.03% and 59.4% at 0.643 THz and 1.01 THz due to the interplay of bright-bright and bright-dark modes coupling. Upon examining the electric field distribution in the x-y plane, we found that the electric field energy is predominantly concentrated on the S-shaped split-ring.
    To gain deeper insights into each resonance mode, we employed multipolar decomposition to quantify resonance scattering energy. Our findings revealed that both transparent windows are predominantly governed by electric dipole scattering energy. Further investigations showed that as the array structure’s period varies from 60 μmto 95 μm, the lattice mode progressively couples into the high frequency transmission valley (1.031 THz), giving rise to a high frequency hybrid mode (HFHM). The Q value of this mode initially increases and then decreases, peaking at 27 when the period is 84 μm. Similarly, as the period continues to increase, the lattice mode couples into the low frequency resonance valley (0.76 THz), forming a low frequency hybrid mode (LFHM) with a Q value that reaches a maximum of 51 at 115 μm—approximately an order of magnitude higher than that at a period of 60 μm. Additionally, as the periodicity increases, the near field coupling effect between adjacent units diminishes, leading to the gradual disappearance of the two transparent windows.
    To achieve active control over these transparent windows, we varied the conductivity of VO2 from 20 S/m to 30000 S/m, resulting in a decrease in the transmission amplitudes of the two transparent windows to 37.58% and 3.39%, respectively. Finally, we investigated the slow light effect of the two transparent windows, comparing the maximum group delay between them, which was found to be 8.1 ps. The terahertz metasurface proposed in this study opens up avenues for the design of dynamically tunable sensing and slow light devices in the future.
  • [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 18

    [2]

    Seeds A J, Shams H, Fice M J, Renaud C C 2014 J Lightwave Technol. 33 519

    [3]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [6]

    Hu X G, Yuan S, Armghan A, Liu Y, Jiao Z, Lv H J, Zeng C, Huang Y, Huang Q Z, Wang Y, Xia J S 2017 J. Phys. D:Appl. Phys. 50 1361

    [7]

    Wang S, Zhang M, Ju A A, Wang B, Zhao R, Kong Z B, Wang K S, Lian P F 2023 Opt. Mater. 13 12

    [8]

    Wang Z F, Wu J, Hou J Q, Wan F Y, Fu J H, Wu Q, Ran L X, Denidni T A 2025 Appl. Phys. Lett. 126 211701

    [9]

    Yahiaoui R, Burrow J A, Mekonen S M, Sarangan A, Mathews J, Agha I, Searles T A 2018 Phys. Rev. B 97 155403

    [10]

    Yu W, Meng H Y, Chen Z J, Li X P, Zhang X, Wang F Q, Wei Z C, Tan C H, Huang X G, Li S T 2018 Opt. Commun. 414 29

    [11]

    Jia Z P, Huang L, Su J B, Tang B 2020 Appl. Phys. Express 13 072006

    [12]

    Zhang Y T, Liu S Y, Huang W, Dong E X, Li H Y, Shi X T, Liu M, Zhang W T, Yin S, Luo Z Y 2022 Chinese Phys. B 31 068702

    [13]

    Nourinovin S, Rahman M M, Naftaly M, Philpott M P, Abbasi Q H, Alomainy A 2024 IEEE Trans. Biomed. Eng. 71 2180

    [14]

    Wang H, Zhang D Q, Jin Z W, Fang B, Pan G M, Hong Z, Shu F Z 2025 Phys. Scr. 100 035505

    [15]

    Zhou M, Li Y C, Tian J P, Yang R C 2025 Phys. Lett. A 536 130300

    [16]

    Shu C, Mei J S, Sun H Y, Chen L y, Sun Y 2024 Opt. Quant. Electron. 56 43

    [17]

    Huang W, Cao S T, Liang S J, Shan Y, Zhang W T 2025 Phys. Rev. B 111 045429

    [18]

    Le‐Van Q, Zoethout E, Geluk E J, Ramezani M, Berghuis M, Gómez Rivas J 2019 Adv. Opt. Mater. 7 1801451

    [19]

    Manjappa M, Srivastava Y K, Singh R 2016 Phys. Rev. B 94 161103

    [20]

    Khlopin D, Laux F, Wardley W P, Martin J, Wurtz G A, Plain J, Bonod N, Zayats A V, Dickson W, Gérard D 2017 J. Opt. Soc. Amer. B 34 691

    [21]

    Tan T C W, Srivastava Y K, Manjappa M, Plum E, Singh R 2018 Appl. Phys. Lett. 112 201111

    [22]

    Burrow J A, Yahiaoui R, Sarangan A, Mathews J, Agha I, Searles T A 2019 Opt. Lett. 44 2705

    [23]

    Karmakar S, Kumar D, Varshney R K, Roy Chowdhury D 2020 Opt. Lett. 45 3386

    [24]

    Seliuta D, Šlekas G, Valušis G, Kancleris ff 2019 Opt. Lett. 44 759

    [25]

    Tan T C W, Plum E, Singh R 2020 Adv. Optical Mater. 20 1901572

    [26]

    Luo C C, Tan T C W, Fan Z Y, Chen L, Singh R, Zhu Y M, Zhuang S L 2024 Sensor Actuat. B. 410 135628

    [27]

    Michaeli L, Suchowski H, Ellenbogen T 2020 Laser Photonics Rev. 14 1900204

    [28]

    Ning R X, Li D K, Yang T L, Chen Z H, Qian H W 2019 Sci. Rep. 9 15801

    [29]

    Luo H, Luo J, Chu H C, Ji W J, Lai Y 2025 Phys. Rev. Applied 23 024025

    [30]

    Li T F, Chu Z T, Yang J, Ding C, Jia Y X, Fu X M, Zhao S, Liu Z T, Feng C Q, Wang J F 2025 Mater. Today Nano 29 100559

    [31]

    Mei J S, Song C L, Shu C 2021 Opt. Commun. 488 126851

    [32]

    Wang J P, Fan C Z 2025 Phys. Scr. 100 025517

    [33]

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801(in Chinese)[胡树南,李德琼,詹杰,高恩多,王琦,刘南柳,聂国政2025 74 097801]

    [34]

    Guo W P, Wang Y, Liu C X, Tan P, Wang L Guan Chao Li, Tian H 2024 Appl. Phys. Lett. 125 241703

    [35]

    Chen M M, Yang X X, Shu F Z 2024 Mater. Res. Bull. 180 113000

    [36]

    Wang Z, Xie J, Fan C Z 2024 J. Phys. D:Appl. Phys. 57 395107

    [37]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758

    [38]

    Liu H, Fan Y X, Chen H G, Li L, Tao Z Y 2019 Opt. Commun. 445 277

    [39]

    Li C, Zhu W, Liu Z, Pan R H, Hu S, Du S, Li J J, Gu C Z 2020 Nanoscal 12 10065

    [40]

    Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W, Yang Z Q 2018 ACS Photonics 5 3040

    [41]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [42]

    Fan J X, Li Z L, Xue Z Q, Xing H Y, Lu D, Xu G Z, Gu J Q, Han J G, Cong L Q 2023 Opto-Electron. Sci. 2 230006

    [43]

    Fan F, Hou Y, Jiang Z W, Wang X H, Chang S J 2012 Appl. Opt. 51 4589

    [44]

    Gao W K, Chen F, Yang W X 2025 Opt. Commun. 590 132027

    [45]

    Liang D H, Chen T 2023 Diam. Relat. Mater. 131 109613

    [46]

    Lu J J, Li H, Qiu X J, Long H, Shen J 2025 Photonics Nanostruct. Fundam. Appl. 64 101370

    [47]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401

    [48]

    Zhang Z J, Yang J B, Han Y X, He X, Zhang J J, Huang J, Chen D B, Xu S Y, Xie W L 2020 Appl. Phys. A 126 199

  • [1] JIANG Mingyang, LI Jiusheng. Radian and rotation co-induced phase controlling terahertz metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.74.20241465
    [2] Liu Zhao. Fractionalized topological states in moiré superlattices. Acta Physica Sinica, doi: 10.7498/aps.73.20241029
    [3] Xu Yu-Xuan, Yao Tai-Yu, Deng Li, Chen Shi-Mei, Xu Chen-Yao, Tang Wen-Xuan. Directional emission properties of thin film microdisk. Acta Physica Sinica, doi: 10.7498/aps.73.20231754
    [4] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, doi: 10.7498/aps.73.20240834
    [5] Sun Zhan-Shuo, Wang Xin, Wang Jun-Lin, Fan Bo, Zhang Yü, Feng Yao. Sensing and slow light properties of dual-band terahertz metamaterials based on electromagnetically induced transparency-like. Acta Physica Sinica, doi: 10.7498/aps.71.20212163
    [6] Xiong Lei, Ding Hong-Wei, Li Guang-Yuan. Quadrupolar lattice plasmon modes induced by diffraction of high-quality factors in silver nanoparticle arrays. Acta Physica Sinica, doi: 10.7498/aps.71.20211629
    [7] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.70.20202163
    [8] Diffraction-induced quadrupolar lattice plasmon modes of high-quality factors for silver nanoparticle arrays. Acta Physica Sinica, doi: 10.7498/aps.70.20211629
    [9] Chen Heng-Jie, Xue Hang, Li Shao-Xiong, Wang Zhen. A method of determining microwave dissipation of Josephson junctions with non-linear frequency response. Acta Physica Sinica, doi: 10.7498/aps.68.20190167
    [10] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, doi: 10.7498/aps.64.077305
    [11] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, doi: 10.7498/aps.64.090502
    [12] Jiang Bin, Liu An-Jin, Chen Wei, Xing Ming-Xin, Zhou Wen-Jun, Zheng Wan-Hua. The characteristic of the stero-coupling high-Q photonic crystal slab cavity. Acta Physica Sinica, doi: 10.7498/aps.59.8548
    [13] Zhang Jing, Pan Wei, Yan Lian-Shan, Luo Bin. Dispersion management optimization of multi-wavelength all-optical regeneration based on self-phase modulation. Acta Physica Sinica, doi: 10.7498/aps.59.7002
    [14] Liu Sheng, Zhang Peng, Xiao Fa-Jun, Gan Xue-Tao, Zhao Jian-Lin. Analysis of linear defect modes in two-dimensional photonic lattices by employing Brillouin zone spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.58.5467
    [15] Chen Wei, Xing Ming-Xin, Ren Gang, Wang Ke, Du Xiao-Yu, Zhang Ye-Jin, Zheng Wan-Hua. Design of high polarization and single-mode photonic crystal laser. Acta Physica Sinica, doi: 10.7498/aps.58.3955
    [16] Liu Yan-Fen, Liu Jing-Hui, Jia Cheng. Retarded modes of lateral ferromagnetic/ferromagnetic superlattice. Acta Physica Sinica, doi: 10.7498/aps.57.1897
    [17] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.2101
    [18] PANG GEN-DI, XIONG SHI-JIE, CAI JIAN-HUA. ON THE INTERFACE MISFIT AND THE SUPERLATTICE STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.35.408
    [19] YANG RUI-QING, XIONG SHI-JIE, CAI JIAN-HUA. SOUND ATTENUATION IN METALLIC SUPERLATTICES. Acta Physica Sinica, doi: 10.7498/aps.33.1058
    [20] MA HONG-RU, CAI JIAN-HUA. SPIN WAVES IN MAGNETIC METALLIC SUPERLATTICES. Acta Physica Sinica, doi: 10.7498/aps.33.444
Metrics
  • Abstract views:  34
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  20 October 2025
  • /

    返回文章
    返回
    Baidu
    map