-
In this paper, a novel scheme is proposed and experimentally demonstrated. It is based on a directly modulated laser (DML) and all-optical mode-locking for generating tunable microwave frequency combs (MFCs). Theoretical analysis reveals that harmonic or rational harmonic mode-locking can be achieved by adjusting the parameters of the fiber ring cavity, which enables the generation of MFCs with adjustable comb spacing. Based on this, experimental verification shows that the DML can be driven to exhibit various typical dynamical states under sinusoidal modulation with different frequencies and amplitudes. These states serve as seeding signals that subsequently undergo all-optical mode-locking within the ring laser cavity, resulting in the generation of MFCs. The bandwidths of the MFCs are 13, 15, 19.5, 19.8, and 22 GHz, respectively, all of which satisfy the ± 5 dB flatness criterion. A continuously tunable comb-spacing range of 200 MHz to 3 GHz is attained through the effective combination of the DML and all-optical mode-locking. The single-sideband (SSB) phase noise of the first comb line remains below −100 dBc/Hz at a 10 kHz offset. Theoretical analysis and experimental results demonstrate that the modulated signals of the proposed scheme support flexible parameter tuning over a wide range. Furthermore, the generated MFCs have remarkable advantages in flatness, bandwidth, and tunability.
-
Keywords:
- directly modulated laser /
- dynamic states /
- all-optical mode-locking /
- microwave frequency comb
-
[1] Xu Z W, Shu X W 2019 Journal of Lightwave Technology. 37 3503
[2] Shin J, Ryu Y, Miri M A, Shim S B, Choi H, Alù A, Suh J, Cha J 2022 Nano letters. 22 5459
[3] Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033
[4] Liu Q H, Mei J X, Wang J D, Zhang F M, Qu X H 2024 Acta Phys. Sin. 73 044204 (in Chinese) [刘琪华,梅佳雪,王金栋, 张福民,曲兴华 2024 73 044204]
[5] Picqué N, Hänsch T W 2019 Nature Photonics. 13 146
[6] Wang S P, Chen Z, Li T F 2021 Chin. Phys. B. 30 048501
[7] Wu S S, Liu Y L, Liu Q C, Wang S P, Chen Z, Li T F 2022 Phys. Rev. Lett. 128 153901
[8] Wu D X, Xue X X, Li S Y, Zheng X P, Xiao X D, Zha Y, Zhou B K 2017 Optics Express. 25 14516
[9] Gao S, Gao Y, He S 2010 Electron. Lett. 46 236
[10] Ma Y N, Huang T T, Wang W R, Song K C 2018 Acta Phys. Sin. 67 238401 (in Chinese) [麻艳娜,黄添添,王文睿,宋开臣 2018 67 238401]
[11] Yang B, Zhao H Y, Cao Z Z, Yang S, Zhai Y R, Ou J, Chi H 2020 Optics Express. 28 33220
[12] Wang Z Y, Wu R H, Li B, Guo J P, Liu H Z 2023 Opt. Laser Technol. 162 109253
[13] Tang H Y, Kong Z X, Li F P, Chen X Y, Li M, Zhu N H, Li W 2024 Journal of Lightwave Technology. 42 5522
[14] Chan S C, Xia G Q, Liu J M 2007 Optics letters. 32 1917
[15] Zhou P, Zhang R H, Zhu J, Li N Q 2022 Acta Phys. Sin. 71 214204 (in Chinese) [周沛, 张仁恒,朱尖,李念强 2022 71 214204 ]
[16] Juan Y S, Lin F Y 2009 Optics Letters. 34 1636
[17] Zhuang J P, Li X Z, Li S S, Chan S C 2016 Optics Letters. 41 5764
[18] Li Y N, Fan L, Xia G Q, Wu Z M 2017 IEEE Photonics Journal. 9 5502607
[19] Zhao W, Mao Y F, Li Y B, Chen G C, Lu D, Kan Q, Zhao L J 2020 IEEE Photonics Technol. Lett. 32 1407
[20] Gao T C, Zhang Y L, Li J C, Li S H, Zhang Z Y, Zhang S J, Liu Y 2024 Opt. Laser Technol. 170 110295
[21] Ahmed M, El-Lafi A 2008 Opt. Laser Technol. 40 809
[22] Das P, Kaechele W, Theimer J P, Pirich A R 1997 Photonic Processing Technology & Applications.3075 21
[23] Wu C, Dutta N K 2000 IEEE Journal of Quantum Electronics. 36 145
[24] Zi Y J, Jiang Y, Ma C, Bai G F, Jia Z R, Wu T W, Huang F Q 2015 IEEE Photonics Journal. 7 1501309
[25] Hemery E, Chusseau L, Lourtioz J M 1990 IEEE Journal of Quantum Electronics. 26 633
Metrics
- Abstract views: 25
- PDF Downloads: 1
- Cited By: 0









下载: