Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-paramter-scanning-based quantum- memory- assisted measurement-device-independent quantum key distribution protocol

LIU Chang SUN Mingshuo LUO Yizhen DONG Shuyan ZHANG Chunhui WANG Qin

Citation:

Dual-paramter-scanning-based quantum- memory- assisted measurement-device-independent quantum key distribution protocol

LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Measurement-device-independent quantum key distribution (MDI-QKD) protocol can effectively resist all possible attacks targeting the measurement devices in a quantum key distribution (QKD) system, thus exhibiting high security. However, due to the protocol’s high sensitivity to channel attenuation, its key generation rate and transmission distance are significantly limited in practical applications.To improve the performance of MDI-QKD, researchers have proposed quantum-memory (QM)-assisted MDI-QKD protocol, which has enhanced the protocol's performance to a certain extent. Nevertheless, under finite-size conditions where the total number of transmitted pulses is limited, accurately estimating the relevant statistical parameters is still a challenge. As a result, existing QM-assisted MDI-QKD schemes still encounters issues such as low key rates and limited secure transmission distances.To solve these problems, this work proposes a novel improved finite-size QM-assisted MDI-QKD protocol. By utilizing quantum memories to temporarily store early-arriving pulses and release them synchronously, the protocol effectively reduces the influence caused by channel asymmetry. Additionally, the protocol introduces a four-intensity decoy-state method to improve the estimation accuracy of single-photon components. Meanwhile, to mitigate the influence of finite-length effects on QM schemes, the proposed protocol combines a collective constraint model and a double-scanning algorithm to jointly estimate scanning error counts and vacuum-related counts. This approach enhances the estimation accuracy of the single-photon detection rate and phase error rate under finite-size conditions, thereby significantly improving the secure key rate of the MDI-QKD system.Simulation results show that under the same experimental conditions, compared with the existing QM-assisted three-intensity decoy-state MDI-QKD protocol and the four-intensity decoy-state MDI-QKD protocol based on Heralded Single-photon Source (HSPS), the proposed protocol extends the secure transmission distance by more than 30 km and 100 km, respectively. This proves that under the same parameter settings, the proposed scheme exhibits significant advantages in both key rate and secure transmission distance. Therefore, this research provides important theoretical references and valuable benchmarks for developing long-distance, high-security quantum communication networks.
  • 图 1  基于量子存储辅助的MDI-QKD系统装置示意图, 其中IM为强度调制器, NC为非线性晶体, DM为二色镜, PM为相位调制器, FM为法拉第反射镜, Cir为环形器, D0, D1, D2为单光子探测器, PC为泡克耳斯盒, BS为光束分离器, PBS为偏振光束分离器, BSM代表贝尔态测量装置, FPGA代表现场可编程逻辑门阵列

    Figure 1.  Schematic diagram of a quantum memory-assisted MDI-QKD system, where IM represents intensity modulator, NC represents nonlinear crystal, DM represents dichroic mirror, PM represents phase modulator, FM represents Faraday mirror, Cir represents circulator, D0, D1, D2 represent single-photon detectors, PC represents pockels cell, BS represents beam splitter, PBS represents polarization beam splitter, BSM represents Bell-state measurement device, FPGA represents field programmable gate array.

    图 2  本文提出的方案与已有MDI-QKD方案的系统的增益$S_{{x_{\text{A}}}, {y_{\text{B}}}}^K$ (a) 和误码率$ E_{{x_{\text{A}}}, {y_{\text{B}}}}^K $(b) 曲线对比. 总脉冲数$N = {10^{10}}$

    Figure 2.  Comparison of the system gain $S_{{x_{\text{A}}}, {y_{\text{B}}}}^K$ (a) and quantum bit-error rate $ E_{{x_{\text{A}}}, {y_{\text{B}}}}^K $ (b) between the proposed scheme and existing MDI-QKD schemes. Total number of pulses $N = {10^{10}}$.

    图 3  本文提出的方案与已有MDI-QKD方案的密钥率曲线对比. 总脉冲数$N = {10^{10}}$, 存储轮数$M = 20$

    Figure 3.  Comparison between the proposed scheme and existing MDI-QKD schemes. Total number of pulses $N = {10^{10}}$, and the number of storage rounds $M = 20.$

    图 4  有限长效应对不同方案的影响. 存储轮数$M = 10$

    Figure 4.  Comparison of the impact of finite-size effects on different QKD schemes. Number of storage rounds $M = 10.$

    图 5  在不同存储保真度 (a) 与存储效率(b) 下密钥率随传输距离的变化. 存储轮数$M = 10$, 总脉冲数$N = {10^{10}}$

    Figure 5.  Variation of the key rate with transmission distance under (a) different storage fidelities and (b) different storage efficiencies. Number of storage rounds $M = 10$, and the total number of pulses $N = {10^{10}}$.

    图 6  不同存储效率下密钥率随存储轮数的变化. 总脉冲数$N = {10^{10}}$

    Figure 6.  Variation of the key rate with the number of storage rounds under different storage efficiencies. Total number of pulses $N = {10^{10}}$.

    表 1  基于量子存储的四强度诱骗态MDI-QKD协议仿真使用的参数

    Table 1.  Simulation parameters used in the quantum-memory-based four-intensity decoy-state MDI-QKD protocol.

    ${e_{\text{d}}}$ $Pd$ $P{d_{\text{t}}}$ ${\eta _{\text{d}}}$ ${\eta _{\text{t}}}$ $\xi $ $f$ $\alpha $/(dB·km–1)
    $0.015$ $ {10^{ - 7}} $ ${10^{ - 7}}$ $0.6$ $0.75$ ${10^{ - 10}}$ $1.16$ $0.2$
    DownLoad: CSV
    Baidu
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [3]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [4]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J et al. 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [5]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [6]

    Chen Y P, Liu J Y, Sun M S et al. 2021 Opt. Lett. 46 3729Google Scholar

    [7]

    Chanelière T, Matsukevich D, Jenkins S, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [8]

    Panayi C, Razavi M, Ma X F, Lütkenhaus N 2014 New J. Phys. 16 043005Google Scholar

    [9]

    Piparo N L, Razavi M, Panayi C 2015 IEEE J. Sel. Top. Quantum Electron. 21 138Google Scholar

    [10]

    Pittman T B, Franson J D 2002 Phys. Rev. A 66 062302Google Scholar

    [11]

    Evans C J, Nunn C M, Cheng S W L, Franson J D, Pittman T B 2023 Phys. Rev. A 108 L050601Google Scholar

    [12]

    Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 104001Google Scholar

    [13]

    Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2023 Phys. Rev. Appl. 20 024029Google Scholar

    [14]

    Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309Google Scholar

    [15]

    Mo X F, Zhu B, Han Z F, Gui Y Z, Guo G C 2005 Opt. Lett. 30 2632Google Scholar

    [16]

    Goswami I, Mandal M, Mukhopadhyay S 2022 J. Opt. 51 379Google Scholar

    [17]

    Kaneda F, Xu F H, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar

    [18]

    Yu Z W, Zhou Y H, Wang X B 2015 Phys. Rev. A 91 032318Google Scholar

    [19]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [20]

    Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 4732Google Scholar

    [21]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [22]

    Ren Z A, Chen Y P, Liu J Y, Ding H J, Wang Q 2021 IEEE Commun. Lett. 25 940Google Scholar

    [23]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501Google Scholar

    [24]

    Duan L M, Lukin M, Cirac L, Zoller P 2001 Nature 414 413Google Scholar

    [25]

    Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818Google Scholar

    [26]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [27]

    Li X K, Song X Q, Guo Q W, Zhou X Y, Wang Q 2021 Chin. Phys. B 30 060305Google Scholar

    [28]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [29]

    Jozsa R 1994 J. Mod. Opt. 41 2315Google Scholar

  • [1] LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin. Quantum Memory Assisted Measurement-DeviceIndependent Quantum Key Distribution Protocol Based on Double-Scanning Method. Acta Physica Sinica, doi: 10.7498/aps.75.20251171
    [2] LI Siying, ZHU Shun, HU Feifei, HUANG Yu, LIN Xubin, QIN Chujun, CAO Yuan, LIU Yun. Improved source-correlated quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.74.20250268
    [3] Luo Yi-Zhen, Ma Luo-Jia, Sun Ming-Shuo, Wu Si-Rui, Qiu Li-Hua, Wang He, Wang Qin. Source monitoring quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, doi: 10.7498/aps.73.20241269
    [4] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.72.20230652
    [5] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.72.20231203
    [6] Liu Tian-Le, Xu Xiao, Fu Bo-Wei, Xu Jia-Xin, Liu Jing-Yang, Zhou Xing-Yu, Wang Qin. Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.72.20230160
    [7] Xing Xue-Yan, Li Xia-Xia, Chen Yu-Hui, Zhang Xiang-Dong. Optical echo memory based on photonic crystal cavities. Acta Physica Sinica, doi: 10.7498/aps.71.20220083
    [8] Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong. Quantum memory and manipulation based on erbium doped crystals. Acta Physica Sinica, doi: 10.7498/aps.71.20211803
    [9] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, doi: 10.7498/aps.71.20220344
    [10] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, doi: 10.7498/aps.68.20182215
    [11] Dou Jian-Peng, Li Hang, Pang Xiao-Ling, Zhang Chao-Ni, Yang Tian-Huai, Jin Xian-Min. Research progress of quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20190039
    [12] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20182207
    [13] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, doi: 10.7498/aps.63.140303
    [14] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, doi: 10.7498/aps.57.4941
    [15] Mi Jing-Long, Wang Fa-Qiang, Lin Qing-Qun, Liang Rui-Sheng, Liu Song-Hao. Decoy state quantum key distribution with dual detectors heralded single photon source. Acta Physica Sinica, doi: 10.7498/aps.57.678
    [16] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, doi: 10.7498/aps.57.5605
    [17] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, doi: 10.7498/aps.56.1924
    [18] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, doi: 10.7498/aps.56.5243
    [19] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, doi: 10.7498/aps.56.6434
    [20] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, doi: 10.7498/aps.54.5014
Metrics
  • Abstract views:  17
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2025
  • Accepted Date:  23 October 2025
  • Available Online:  13 December 2025
  • /

    返回文章
    返回
    Baidu
    map