Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of barrier parameters in rotating double-well potential on hidden vortices in Bose-Einstein condensate

YANG Guoquan JIN Jingjing

Citation:

Influence of barrier parameters in rotating double-well potential on hidden vortices in Bose-Einstein condensate

YANG Guoquan, JIN Jingjing
cstr: 32037.14.aps.74.20251001
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Vortex dynamics in Bose-Einstein condensates (BECs) are crucial for understanding quantum coherence, superfluidity, and topological phenomena. In this work, we investigate the influence of barrier parameters in a rotating double-well potential on the formation and evolution of hidden vortices, aiming to reveal the regulatory mechanisms of barrier width and height on vortex dynamics. By numerically solving the dissipative Gross-Pitaevskii equation for a two-dimensional BEC system confined strongly along the z-axis, we analyze the density distribution, phase distribution, vortex number, and average angular momentum under varying barrier widths and heights. The results show that increasing barrier width significantly promote the formation of hidden vortices, with the total number of visible and hidden vortices still satisfying the Feynman rule. For larger barrier widths, hidden vortices exhibit an oscillatory distribution due to enhanced vortex interactions. In contrast, when the barrier height is above the critical threshold (i.e. the height sufficient to completely separate the condensate), the effect of the barrier height is limited, but below this critical threshold, the hidden vortex cores become visible, thereby reducing the threshold for vortex formation. A particularly striking finding is the efficacy of a temporary barrier strategy: by reducing $ {V_0} $ from $ 4\hbar {\omega _x} $ to $ 0 $ within a rotating double-well trap, stable vortex states with four visible vortices are generated at $ \varOmega = 0.5{\omega _x} $. Under the same parameter conditions, it is impossible to generate a stable state containing vortices at the same $ \varOmega $ by directly using the rotating harmonic trap. In other words, a temporary barrier within a rotating harmonic trap effectively introduces phase singularities, facilitating stable vortex states at lower rotation frequencies than those required in a purely harmonic trap. These findings demonstrate that precise tuning of barrier parameters can effectively control vortex states, providing theoretical guidance for experimentally observing hidden vortices and advancing the understanding of quantum vortex dynamics.
      Corresponding author: YANG Guoquan, yangguoquan_1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12104418) and the Research Foundation for Basic Research of Shanxi Province, China (Grant Nos. 202203021211337, 202303021222265, 202303021212269, 202303021221177).
    [1]

    Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950Google Scholar

    [2]

    Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402Google Scholar

    [3]

    Hall B V, Whitlock S, Anderson R, Hannaford P, Sidorov A I 2007 Phys. Rev. Lett. 98 030402Google Scholar

    [4]

    Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G, Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401Google Scholar

    [5]

    Hofferberth S, Lesanovsky I, Fischer B, Verdu J, Schmiedmayer J 2006 Nat. Phys. 2 710Google Scholar

    [6]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman J B 2009 Phys. Rev. Lett. 102 130401Google Scholar

    [7]

    Spielman I B 2009 Phys. Rev. A 79 063613Google Scholar

    [8]

    Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806Google Scholar

    [9]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476Google Scholar

    [10]

    Haljan P C, Coddington I, Engels P, Cornell E A 2001 Phys. Rev. Lett. 87 210403Google Scholar

    [11]

    Hodby E, Hechenblaikner G, Hopkins S A, Marago O M, Foot C J 2001 Phys. Rev. Lett. 88 010405Google Scholar

    [12]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047Google Scholar

    [13]

    Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature 455 948Google Scholar

    [14]

    Fetter A L 2009 Rev. Mod. Phys. 81 647Google Scholar

    [15]

    Cooper N R 2008 Adv. Phys. 57 539Google Scholar

    [16]

    Dalfovo F, Giorgini S, Guilleumas M, Pitaevskii L, Stringari S 1997 Phys. Rev. A 56 3840Google Scholar

    [17]

    Stringari S 2001 Phys. Rev. Lett. 86 4725Google Scholar

    [18]

    Penckwitt A A, Ballagh R J, Gardiner C W 2002 Phys. Rev. Lett. 89 260402Google Scholar

    [19]

    Baym G, Pethick C J 2004 Phys. Rev. A 69 043619Google Scholar

    [20]

    Aftalion A, Blanc X, Dalibard J 2005 Phys. Rev. A 71 023611Google Scholar

    [21]

    Mizushima T, Machida K 2010 Phys. Rev. A 81 053605Google Scholar

    [22]

    Ostrovskaya E A, Kivshar Y S 2004 Phys. Rev. Lett. 93 160405Google Scholar

    [23]

    Piazza F, Collins L A, Smerzi A 2009 Phys. Rev. A 80 021601Google Scholar

    [24]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627Google Scholar

    [25]

    Wen L H, Luo X B 2012 Laser Phys. Lett. 9 618Google Scholar

    [26]

    Sabari S 2017 Phys. Lett. A 381 3062Google Scholar

    [27]

    Ishfaq A B, Bishwajyoti D 2024 Phys. Rev. E 110 024208Google Scholar

    [28]

    Wu B, Niu Q 2003 New J. Phys. 5 104Google Scholar

    [29]

    Liu M, Wen L H, Xiong H W, Zhan M S 2006 Phys. Rev. A 73 063620Google Scholar

    [30]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301Google Scholar

  • 图 1  不同势阱宽度$ \sigma $下, (a) $ {l_z} $与不同$ \varOmega $下生成的涡旋总数$ {N_{\text{t}}} $的关系, (b) $ {l_z} $与$ \varOmega $的关系, 以及(c) $ {N_{\text{h}}} $与$ \varOmega $的关系

    Figure 1.  Relationships of (a) $ {l_z} $ versus $ {N_{\text{t}}} $ for different $ \varOmega $, (b) $ {l_z} $ versus $ \varOmega $, (c) $ {N_{\text{h}}} $ versus $ \varOmega $ for different barrier widths $ \sigma $.

    图 2  不同势垒宽度$ \sigma $下, 双势阱以$ \varOmega = 0.9{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)和波函数$ \psi $的相位分布(第2行)在$ t = 250\omega _x^{ - 1} $时的情形

    Figure 2.  Density distribution $ {\left| \psi \right|^{2}} $ (the first row) and phase distribution of $ \psi $ (the second row) for different widths $ \sigma $ at $ t = 250\omega _x^{ - 1} $ after rotating the double-well potential with $ \varOmega = 0.9{\omega _x} $.

    图 3  $ \sigma = 2{d_0} $, 双势阱以$ \varOmega = 0.9{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)、波函数$ \psi $的相位分布(第2行), 以及$ {l_z} $随时间的演化(第3行)

    Figure 3.  Density distribution $ {\left| \psi \right|^{2}} $ (the first row), phase distribution of $ \psi $ (the second row), and time evolution of $ {l_z} $(the third row) for $ \sigma = 2{d_0} $ after the double-well potential suddenly begins to rotate with $ \varOmega = 0.9{\omega _x} $.

    图 4  不同势阱高度$ {V_0} $下, (a) $ {l_z} $与不同$ \varOmega $下生成的涡旋总数$ {N_{\text{t}}} $的关系, (b) $ {l_z} $与$ \varOmega $的关系, (c) $ {N_{\text{h}}} $与$ \varOmega $的关系

    Figure 4.  Relationships of (a) $ {l_z} $ versus $ {N_{\text{t}}} $ for different $ \varOmega $, (b) $ {l_z} $ versus $ \varOmega $, (c) $ {N_{\text{h}}} $ versus $ \varOmega $ for different barrier heights $ {V_0} $.

    图 5  当$ {V_0} \gt 25\hbar {\omega _x} $时, (a)凝聚体基态密度截面图$ {\left| {\psi (x, 0)} \right|^2} $和(b)势阱截面图$ V(x, 0) $

    Figure 5.  (a) Cross-sectional plots $ {\left| {\psi (x, 0)} \right|^2} $ of the initial ground state density and (b) sectional view $ V(x, 0) $ of the potential well along the x-axis for $ {V_0} \gt 25\hbar {\omega _x} $.

    图 6  不同势垒高度$ {V_0} $下, 双势阱以$ \varOmega = 0.5{\omega _x} $旋转时, 凝聚体的密度分布$ {\left| \psi \right|^{2}} $(第1行)和波函数$ \psi $的相位分布(第2行)在$ t = 250\omega _x^{ - 1} $时的情形

    Figure 6.  Density distribution $ {\left| \psi \right|^{2}} $ (the first row) and phase distribution of $ \psi $ (the second row) for different heights $ {V_0} $ at $ t = 250\omega _x^{ - 1} $ after rotating the double-well potential with $ \varOmega = 0.5{\omega _x} $.

    图 7  当$ {V_0} \lt 25\hbar {\omega _x} $时, (a)凝聚体基态密度截面图$ {\left| {\psi (x, 0)} \right|^2} $和(b)势阱截面图$ V(x, 0) $

    Figure 7.  (a) Cross-sectional plots $ {\left| {\psi (x, 0)} \right|^2} $ of the initial ground state density and (b) sectional view $ V(x, 0) $ of the potential well along the x-axis for $ {V_0} \lt 25\hbar {\omega _x} $.

    图 8  双阱势以$ \varOmega = 0.5{\omega _x} $旋转后, 凝聚体密度分布$ {\left| \psi \right|^{2}} $和波函数$ \psi $相位分布的时间演化, 其中$ {V_0} = 20\hbar {\omega _x} $(第1, 2行), $ {V_0} = 4\hbar {\omega _x} $(第3, 4行)

    Figure 8.  Time evolution of the density distribution $ {\left| \psi \right|^{2}} $ and phase distribution of $ \psi $ after the double-well potential suddenly begins to rotate with $ \varOmega = 0.5{\omega _x} $. Among them, $ {V_0} = 20\hbar {\omega _x} $ in the first and second rows, and $ {V_0} = 4\hbar {\omega _x} $ in the third and fourth rows.

    Baidu
  • [1]

    Smerzi A, Fantoni S, Giovanazzi S, Shenoy S R 1997 Phys. Rev. Lett. 79 4950Google Scholar

    [2]

    Albiez M, Gati R, Folling J, Hunsmann S, Cristiani M, Oberthaler M K 2005 Phys. Rev. Lett. 95 010402Google Scholar

    [3]

    Hall B V, Whitlock S, Anderson R, Hannaford P, Sidorov A I 2007 Phys. Rev. Lett. 98 030402Google Scholar

    [4]

    Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G, Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401Google Scholar

    [5]

    Hofferberth S, Lesanovsky I, Fischer B, Verdu J, Schmiedmayer J 2006 Nat. Phys. 2 710Google Scholar

    [6]

    Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V, Spielman J B 2009 Phys. Rev. Lett. 102 130401Google Scholar

    [7]

    Spielman I B 2009 Phys. Rev. A 79 063613Google Scholar

    [8]

    Madison K W, Chevy F, Wohlleben W, Dalibard J 2000 Phys. Rev. Lett. 84 806Google Scholar

    [9]

    Abo-Shaeer J R, Raman C, Vogels J M, Ketterle W 2001 Science 292 476Google Scholar

    [10]

    Haljan P C, Coddington I, Engels P, Cornell E A 2001 Phys. Rev. Lett. 87 210403Google Scholar

    [11]

    Hodby E, Hechenblaikner G, Hopkins S A, Marago O M, Foot C J 2001 Phys. Rev. Lett. 88 010405Google Scholar

    [12]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047Google Scholar

    [13]

    Weiler C N, Neely T W, Scherer D R, Bradley A S, Davis M J, Anderson B P 2008 Nature 455 948Google Scholar

    [14]

    Fetter A L 2009 Rev. Mod. Phys. 81 647Google Scholar

    [15]

    Cooper N R 2008 Adv. Phys. 57 539Google Scholar

    [16]

    Dalfovo F, Giorgini S, Guilleumas M, Pitaevskii L, Stringari S 1997 Phys. Rev. A 56 3840Google Scholar

    [17]

    Stringari S 2001 Phys. Rev. Lett. 86 4725Google Scholar

    [18]

    Penckwitt A A, Ballagh R J, Gardiner C W 2002 Phys. Rev. Lett. 89 260402Google Scholar

    [19]

    Baym G, Pethick C J 2004 Phys. Rev. A 69 043619Google Scholar

    [20]

    Aftalion A, Blanc X, Dalibard J 2005 Phys. Rev. A 71 023611Google Scholar

    [21]

    Mizushima T, Machida K 2010 Phys. Rev. A 81 053605Google Scholar

    [22]

    Ostrovskaya E A, Kivshar Y S 2004 Phys. Rev. Lett. 93 160405Google Scholar

    [23]

    Piazza F, Collins L A, Smerzi A 2009 Phys. Rev. A 80 021601Google Scholar

    [24]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627Google Scholar

    [25]

    Wen L H, Luo X B 2012 Laser Phys. Lett. 9 618Google Scholar

    [26]

    Sabari S 2017 Phys. Lett. A 381 3062Google Scholar

    [27]

    Ishfaq A B, Bishwajyoti D 2024 Phys. Rev. E 110 024208Google Scholar

    [28]

    Wu B, Niu Q 2003 New J. Phys. 5 104Google Scholar

    [29]

    Liu M, Wen L H, Xiong H W, Zhan M S 2006 Phys. Rev. A 73 063620Google Scholar

    [30]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301Google Scholar

Metrics
  • Abstract views:  1502
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2025
  • Accepted Date:  26 August 2025
  • Available Online:  17 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map