Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Piezoelectric ultrasonic transducers with columnar and acoustic surface structures

LIN Jiyan LI Yao CHEN Cheng LIN Shuyu GUO Linwei XU Jie

Citation:

Piezoelectric ultrasonic transducers with columnar and acoustic surface structures

LIN Jiyan, LI Yao, CHEN Cheng, LIN Shuyu, GUO Linwei, XU Jie
cstr: 32037.14.aps.74.20250901
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The band gap, localization, and waveguide characteristics of phononic crystal structures offer extensive potential applications in transducer field, particularly for circular-hole phononic crystals, which are extensively utilized in research on performance optimization of transducers due to their straightforward structure and easy fabrication. Nonetheless, studies have revealed that the bandgap width of circular-hole phononic crystal structures is directly proportional to their porosity. Typically, a higher porosity leads to enhanced energy localization of elastic waves. However, high porosity implies a narrower distance between circular holes, greatly reducing the mechanical strength of the structure. The introduction of columnar phononic crystal structures solves the problems of high porosity and strict dimensional accuracy requirements in circular-hole phononic crystal structures, providing a new approach for enhancing the performance of piezoelectric ultrasonic transducers.This study employs cylindrical and acoustic surface structures fabricated on the front and rear cover plates of piezoelectric ultrasonic transducers to manipulate the transmission behavior and pathway of sound waves, thereby achieving effective control over coupled vibrations within the transducer. This approach not only solves the problem of uneven amplitude distribution on the radiation surface due to uneven vibration energy transmission but also markedly enhances the displacement amplitude of the transducer’s radiation surface, ultimately enhancing its operational efficiency. The simulation results elucidate the influences of the configuration of these cylindrical and acoustic surface structures on transducer performance. Experimental findings further validate that these structures can effectively improve the performance of piezoelectric ultrasonic transducers. This study provides systematic design theory support for the engineering calculation and optimization of transducers.
      Corresponding author: LIN Shuyu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 12364057), the Second Batch of “Light of Science and Technology” Young and Middle Aged Science and Technology Leading Talents Program of Yulin, China (Grant No. 2024-KJZG-ZQNLJ-003), and the Doctoral Research Start up Fund, China (Grant No. 22GK26).
    [1]

    Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533Google Scholar

    [2]

    Takeda K, Tanaka H, Tsuchiya T, Kaneko S 1998 Ultrasonics 36 75Google Scholar

    [3]

    Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812Google Scholar

    [4]

    Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872Google Scholar

    [5]

    Peters D 1996 J. Mater. Chem. 6 1605Google Scholar

    [6]

    An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. Manu. 26 559Google Scholar

    [7]

    Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensor. Actuat. A: Phys. 381 116037Google Scholar

    [8]

    Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812Google Scholar

    [9]

    Ronda S, Montero de Espinosa F 2018 Adv. Appl. Ceram. 117 177Google Scholar

    [10]

    李照希 2022 博士学位论文 (西安: 西安电子科技大学)

    Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University

    [11]

    秦振杰 2023 硕士学位论文 (太原: 中北大学)

    Qin Z J 2023 M. S. Thesis (Taiyuan: North University of China

    [12]

    张利娟 2022 硕士学位论文 (镇江: 江苏大学)

    Zhang L J 2022 M. S. Thesis (Zhenjiang: Jiangsu University

    [13]

    宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)

    Song M X 2020 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [14]

    王燕萍 2023 硕士学位论文 (广州: 广东工业大学)

    Wang Y P 2023 M. S. Thesis (Guangzhou: Guangdong University of Technology

    [15]

    林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 094311Google Scholar

    Lin J Y, Lin S Y, Wang S, Li Y 2021 Sci. Sin. Phys. Mech. Astron. 51 094311Google Scholar

    [16]

    李婧 2021 博士学位论文 (太原: 中北大学)

    Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China

    [17]

    Wang S, Chen C, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 152 193Google Scholar

    [18]

    Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640Google Scholar

    [19]

    孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378Google Scholar

    Sun X Y, Yan Q, Guo X Y 2021 J. Synt. Crys. 50 1378Google Scholar

    [20]

    程晓茹 2021 硕士学位论文 (兰州: 兰州大学)

    Chen X R 2021 M. S. Thesis (Lanzhou: Lanzhou University

    [21]

    尉浪浪 2023 硕士学位论文 (太原: 中北大学)

    Yu L L 2023 M. S. Thesis (Taiyuan: North University of China

    [22]

    谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)

    Tan Z H 2021 M. S. Thesis (Lanzhou: Lanzhou Jiaotong University

    [23]

    张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96Google Scholar

    Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois. Vibr. Cont. 44 96Google Scholar

    [24]

    Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. Cont. 45 674Google Scholar

    [25]

    Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. Actu. A. Phys. 333 113298Google Scholar

    [26]

    Dryburgh P, Smith J R, Marrow P, Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171Google Scholar

    [27]

    Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131Google Scholar

  • 图 1  大尺寸换能器的结构和振型图 (a) 结构图; (b) 振型图; (c) 辐射面位移分布图

    Figure 1.  Structure and vibration mode diagram of large-sized transducer: (a) Structural diagram; (b) vibration mode diagram; (c) displacement distribution diagram of radiation surface.

    图 2  大尺寸换能器的辐射面位移振幅

    Figure 2.  Radiation surface displacement amplitude of large-sized transducer.

    图 3  柱状和声学表面结构的前盖板的结构示意图

    Figure 3.  Schematic diagram of the front cover plate with columnar and acoustic surface structures.

    图 4  柱状和声学表面结构的前盖板的俯视图和侧视图

    Figure 4.  Top and side views of the front cover plate with columnar and acoustic surface structures.

    图 5  柱状和声学表面结构换能器的后盖板的结构示意图

    Figure 5.  Structural schematic diagram of optimized rear cover plate.

    图 6  柱状和声学表面结构的压电超声换能器的结构和振型图

    Figure 6.  Structural and vibration mode diagrams of piezoelectric ultrasonic transducer with columnar and acoustic surface structure.

    图 7  辐射面位移振幅对比

    Figure 7.  Comparison of displacement amplitude of radiation surface.

    图 8  柱状结构的边长和高度对换能器性能的影响

    Figure 8.  Influences of the side length and height of columnar structures on the performance of transducers.

    图 9  圆柱体孔的半径对换能器性能的影响

    Figure 9.  Influence of the radius of the cylindrical hole on the performance of the transducer.

    图 10  环槽的高度对换能器性能的影响

    Figure 10.  Influence of the height of the ring groove on the performance of the transducer.

    图 11  表面凹槽的厚度对换能器性能的影响

    Figure 11.  Influence of the thickness of surface grooves on the performance of transducers.

    图 12  柱状和声学表面结构的压电超声换能器的实物图

    Figure 12.  Physical image of piezoelectric ultrasonic transducer with columnar and acoustic surface structure.

    图 13  柱状和声学表面结构的压电超声换能器的阻抗特性测量过程图

    Figure 13.  Measurement process diagram of impedance characteristics of piezoelectric ultrasonic transducers with columnar and acoustic surface structures.

    图 14  柱状和声学表面结构的压电超声换能器的输入电阻抗与谐振频率的测量 (a) 测量结果; (b) 仿真导纳曲线图

    Figure 14.  Measurement of input impedance and resonant frequency of piezoelectric ultrasonic transducers with columnar and acoustic surface structures: (a) Measurement results; (b) simulation admittance curve.

    图 15  换能器的辐射面位移振幅分布的实验测量 (a) 测试图; (b) 柱状和声学表面结构的压电超声换能器的测量结果; (c) 未优化换能器的测量结果

    Figure 15.  Experimental measurement of the displacement amplitude distribution of the radiation surface of the transducer: (a) Test chart; (b) measurement results of piezoelectric ultrasonic transducers with columnar and acoustic surface structures; (c) measurement results of the transducer that have not been optimized.

    表 1  大尺寸换能器的详细参数

    Table 1.  Detailed parameters of large-sized transducer.

    组件名称 材料 形状 上底半径/mm 下底半径/mm 高度/mm
    后盖板 Steel AISI 4340 钢 等截面圆柱 31 31 30
    前盖板 Aluminium 6063-T83 圆台 31 50 35
    压电陶瓷圆环(2片) PZT-4 等截面圆环 内径7/外径30 内径7/外径30 8
    DownLoad: CSV

    表 2  (3)—(6)式中各常数取值

    Table 2.  Values of the constants in Eqs. (3)-(6).

    A B C D
    (3)式 x为柱高 19651.327 –277.955 11.400 –0.142
    x为柱边长 10141.232 2616.509 –221.630 7.083
    x为圆柱体孔半径 17511.585 –3.807 4.071 –0.893
    x为环槽高度 17405.221 88.233 –26.829 3.145
    x为凹槽厚度 17512.152 4.646 –0.732 0.746×10–1
    (4)式 y为圆柱体孔半径 17511.585 –3.807 4.071 –0.893
    y为环槽高度 17405.221 88.233 –26.829 3.145
    (5)式 y1为表面凹槽厚度 2.909×10–4 8.421×10–6
    (6)式 z为柱高 41.422 4.051 0.022 –0.454×10–2
    z为柱边长 –572.671 386.836 –72.945 4.206
    z为圆柱体孔半径 87.149 5.651 –0.866 –0.174
    z为环槽的高度 91.649 4.283 –1.871 0.221
    DownLoad: CSV
    Baidu
  • [1]

    Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533Google Scholar

    [2]

    Takeda K, Tanaka H, Tsuchiya T, Kaneko S 1998 Ultrasonics 36 75Google Scholar

    [3]

    Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812Google Scholar

    [4]

    Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872Google Scholar

    [5]

    Peters D 1996 J. Mater. Chem. 6 1605Google Scholar

    [6]

    An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. Manu. 26 559Google Scholar

    [7]

    Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensor. Actuat. A: Phys. 381 116037Google Scholar

    [8]

    Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812Google Scholar

    [9]

    Ronda S, Montero de Espinosa F 2018 Adv. Appl. Ceram. 117 177Google Scholar

    [10]

    李照希 2022 博士学位论文 (西安: 西安电子科技大学)

    Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University

    [11]

    秦振杰 2023 硕士学位论文 (太原: 中北大学)

    Qin Z J 2023 M. S. Thesis (Taiyuan: North University of China

    [12]

    张利娟 2022 硕士学位论文 (镇江: 江苏大学)

    Zhang L J 2022 M. S. Thesis (Zhenjiang: Jiangsu University

    [13]

    宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)

    Song M X 2020 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [14]

    王燕萍 2023 硕士学位论文 (广州: 广东工业大学)

    Wang Y P 2023 M. S. Thesis (Guangzhou: Guangdong University of Technology

    [15]

    林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 094311Google Scholar

    Lin J Y, Lin S Y, Wang S, Li Y 2021 Sci. Sin. Phys. Mech. Astron. 51 094311Google Scholar

    [16]

    李婧 2021 博士学位论文 (太原: 中北大学)

    Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China

    [17]

    Wang S, Chen C, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 152 193Google Scholar

    [18]

    Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640Google Scholar

    [19]

    孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378Google Scholar

    Sun X Y, Yan Q, Guo X Y 2021 J. Synt. Crys. 50 1378Google Scholar

    [20]

    程晓茹 2021 硕士学位论文 (兰州: 兰州大学)

    Chen X R 2021 M. S. Thesis (Lanzhou: Lanzhou University

    [21]

    尉浪浪 2023 硕士学位论文 (太原: 中北大学)

    Yu L L 2023 M. S. Thesis (Taiyuan: North University of China

    [22]

    谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)

    Tan Z H 2021 M. S. Thesis (Lanzhou: Lanzhou Jiaotong University

    [23]

    张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96Google Scholar

    Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois. Vibr. Cont. 44 96Google Scholar

    [24]

    Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. Cont. 45 674Google Scholar

    [25]

    Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. Actu. A. Phys. 333 113298Google Scholar

    [26]

    Dryburgh P, Smith J R, Marrow P, Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171Google Scholar

    [27]

    Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131Google Scholar

  • [1] LIU Yingchun, ZHU Yuanbo, ZHANG Hongjun, LIU Haishun, CAO Wenwu. Full matrix electromechanical properties and applications to ultrasonic transducer of textured (Ba, Ca)(Zr, Ti)O3 ceramics. Acta Physica Sinica, 2025, 74(18): 187701. doi: 10.7498/aps.74.20250835
    [2] WANG Yi, CHEN Cheng, LIN Shuyu. An ultrasonic transducer for vibration mode conversion of wedge-shaped structure of acoustic black hole. Acta Physica Sinica, 2025, 74(4): 044303. doi: 10.7498/aps.74.20241326
    [3] YE Wenxu, JIANG Hao, WANG Yi, LIN Shuyu. Sandwich-type flexural vibration ultrasonic transducer based on the structure of acoustic black hole. Acta Physica Sinica, 2025, 74(18): 184302. doi: 10.7498/aps.74.20250767
    [4] LIN Jiyan, LI Yao, CHEN Cheng, LIU Weidong, LIN Shuyu, GUO Linwei, XU Jie. Surface and defect controlled high power piezoelectric ultrasonic transducers. Acta Physica Sinica, 2025, 74(9): 094301. doi: 10.7498/aps.74.20250047
    [5] XU Long, LI Xuesong, YAO Lei, GONG Tao, LIANG Zhaofeng. Design and vibration performance study of longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system. Acta Physica Sinica, 2025, 74(13): 134301. doi: 10.7498/aps.74.20250294
    [6] Dong Yi-Lei, Chen Cheng, Lin Shu-Yu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method. Acta Physica Sinica, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [7] Di Miao, He Xiang, Liu Ming-Zhi, Yan Shan-Shan, Wei Long-Long, Tian Ye, Yin Guan-Jun, Guo Jian-Zhong. Sound field optimization and particle trapping of confocal ultrasonic transducer. Acta Physica Sinica, 2023, 72(1): 014301. doi: 10.7498/aps.72.20221547
    [8] Lin Ji-Yan, Lin Shu-Yu. Large-scale piezoelectric ultrasonic transducers with tubular near-period phononic crystal point defect structure. Acta Physica Sinica, 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [9] An Zhi-Hong, Huang Lin-Min, Zhao Jin-Bo, Hu Qian-Qian, Sun Zhuan-Lan, Zheng Huan, Zhang Xiao-Qing. High performance laminated FEP/PTFE piezoelectret films for air-borne sound transducers. Acta Physica Sinica, 2022, 71(2): 027701. doi: 10.7498/aps.71.20211609
    [10] Li Fei, Zhang Shu-Jun, Xu Zhuo. Piezoelectricity—An important property for ferroelectrics during last 100 years. Acta Physica Sinica, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [11] He Zi-Hou, Zhao Jing-Bo, Yao Hong, Jiang Juan-Na, Chen Xin. Sound insulation performance of thin-film acoustic metamaterials based on piezoelectric materials. Acta Physica Sinica, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [12] Wang Sha, Lin Shu-Yu. Optimal design of large-sized sandwich transducer based on two-dimensional phononic crystal. Acta Physica Sinica, 2019, 68(2): 024303. doi: 10.7498/aps.68.20181955
    [13] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [14] Liao Tian-Jun, Lin Bi-Hong, Wang Yu-Hui. Performance characteristics of a novel high-efficientgraphene thermionic power device. Acta Physica Sinica, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [15] Zhao Tian-Tian, Lin Shu-Yu, Duan Yi-Lin. Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure. Acta Physica Sinica, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [16] Shu An-Qing, Wu Feng. Optimization of the performance of quantum thermoacoustic micro-cycle. Acta Physica Sinica, 2016, 65(16): 164303. doi: 10.7498/aps.65.164303
    [17] Ma Xi-Yue, Chen Ke-An, Ding Shao-Hu, Zhang Bing-Rui. Optimization of piezoelectric sensor arrays in error sensing of active triple sound insulation structure. Acta Physica Sinica, 2013, 62(12): 124301. doi: 10.7498/aps.62.124301
    [18] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [19] Dong Hua-Feng, Wu Fu-Gen, Mu Zhong-Fei, Zhong Hui-Lin. Effect of basis configuration on acoustic band structure in two-dimensional complex phononic crystals. Acta Physica Sinica, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [20] YAN REN-BO. DIRECTIVITY PATTERNS OF ANGLE PROBES FOR ULTRASONIC BULK WAVES AND SURFACE WAVES. Acta Physica Sinica, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
Metrics
  • Abstract views:  564
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2025
  • Accepted Date:  31 July 2025
  • Available Online:  05 September 2025
  • Published Online:  05 November 2025
  • /

    返回文章
    返回
    Baidu
    map