Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interfacial phonon thermal transport properties of plasmonic-metal-semiconductor composite electrodes

ZHENG Zichao LI Zhikang SANG Lixia

Citation:

Interfacial phonon thermal transport properties of plasmonic-metal-semiconductor composite electrodes

ZHENG Zichao, LI Zhikang, SANG Lixia
cstr: 32037.14.aps.74.20250683
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Plasmonic solar water splitting is produced on the composite electrode with plasmonic metal nanoparticles loaded on semiconductor, where the localized heating generated by relaxation of the metal’s localized surface plasmon resonance (LSPR) under light excitation enhances hydrogen production efficiency. To optimize composite photoanodes for photoelectrochemical water splitting system, the non-equilibrium molecular dynamics simulations are conducted to obtain the interfacial thermal conductivity between plasmonic metals (Cu, Ag, Au) and semiconductors (TiO2, ZnO, MoS2) at varying temperatures. The relationship between interfacial thermal conductivity and phonons at different frequencies is investigated via vibrational density of states which is calculated from the velocity autocorrelation functions and subsequent phonon participation ratio. The results indicate that as he temperature increases, the interfacial thermal conductivity of all composite electrode configurations is enhanced. When Cu and Ag are combined with TiO2 into Cu-TiO2 and Ag-TiO2, respectively, the thermal transport performances of Cu-TiO2 and Ag-TiO2 are superior to Au-TiO2, and the interfacial thermal conductivity of Cu-TiO2 reaches 973.56 MW·m–2·K–1 at 800 K. With Au as the fixed plasmonic component, Au-ZnO shows that its interfacial thermal conductivity reaches 324.44 MW·m–2·K–1 at 800 K, which is higher than those of Au-MoS2 and Au-TiO2. Based on the obtained interfacial thermal conductivity of different composite photoanodes, it is predicted that Cu-ZnO is the optimal composite, but its interfacial thermal conductivity is 547.69 MW·m–2·K–1 at 800 K, second only to Cu-TiO2. The analysis of vibrational density of states and phonon participation ratio shows that the low-frequency region (0—10 THz) is the main region for thermal transport, and both interfaces exhibit a high phonon participation ratio range of 0.7—0.8. However, the Cu-TiO2 possesses much higher vibrational density of states than Cu-ZnO within this critical band. Although Cu-ZnO exhibits a higher phonon participation ratio range in the high-frequency range, its lower overall interfacial thermal conductivity is attributed to the minimal contribution of high-frequency phonons to interfacial thermal conductance. The findings provide optimization strategies based on interfacial thermal transport mechanisms for constructing efficient photoanodes for solar water splitting.
      Corresponding author: SANG Lixia, sanglixia@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176174).
    [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465Google Scholar

    [4]

    Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505Google Scholar

    [5]

    Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671Google Scholar

    [8]

    Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chin. J. Catal. 41 1613Google Scholar

    [9]

    Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34Google Scholar

    [10]

    桑丽霞, 马梦楠 2023 高等学校化学学报 44 20220768Google Scholar

    Sang L X, Ma M N 2023 Chem. J. Chin. Uiv. 44 20220768Google Scholar

    [11]

    桑丽霞, 李志康 2024 73 103105Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [14]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [15]

    Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302Google Scholar

    [16]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768Google Scholar

    [17]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [18]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [19]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [20]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [21]

    Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar

    [22]

    Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [23]

    Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303Google Scholar

    [24]

    Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [25]

    Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804Google Scholar

    [26]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [27]

    Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [30]

    Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853Google Scholar

    [31]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372Google Scholar

    [32]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [33]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [34]

    Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301Google Scholar

    [35]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [36]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [37]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

  • 图 1  不同复合电极的原子结构 (a) Cu-TiO2; (b) Ag-TiO2; (c) Au-ZnO; (d) Au-MoS2

    Figure 1.  Atomic structures of different composite electrodes: (a) Cu-TiO2; (b) Ag-TiO2; (c) Au-ZnO; (d) Au-MoS2.

    图 2  不同温度下Au-TiO2[11], Ag-TiO2和Cu-TiO2复合电极的界面热导

    Figure 2.  Interfacial thermal conductivity of Au-TiO2[11], Ag-TiO2 and Cu-TiO2 composite electrodes with different temperatures.

    图 3  Cu-TiO2复合电极各组分在不同温度下的声子态密度 (a) TiO2; (b) Cu

    Figure 3.  VDOS of each component in Cu-TiO2 composite electrode at different temperatures: (a) TiO2; (b) Cu.

    图 4  Ag-TiO2复合电极各组分在不同温度下的声子态密度 (a) TiO2; (b) Ag

    Figure 4.  VDOS of each component in Ag-TiO2 composite electrode at different temperatures: (a) TiO2; (b) Ag.

    图 5  不同温度下各组分的声子态密度 (a) 300 K; (b) 400 K; (c) 500 K; (d) 600 K; (e) 700 K; (f) 800 K

    Figure 5.  Phonon density of states for each component at different temperatures: (a) 300 K; (b) 400 K; (c) 500 K; (d) 600 K; (e) 700 K; (f) 800 K.

    图 6  不同温度下Au-TiO2[11], Au-MoS2和Au-ZnO复合电极的界面热导

    Figure 6.  Interfacial thermal conductivity of Au-TiO2[11], Au-MoS2 and Au-ZnO composite electrodes at different temperatures.

    图 7  不同温度时Au-MoS2复合电极的声子态密度 (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K

    Figure 7.  Phonon density of states for Au-MoS2 composite electrodes at different temperatures: (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K.

    图 8  不同温度时Au-ZnO复合电极的声子态密度 (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K

    Figure 8.  Phonon density of states for Au-ZnO composite electrodes at different temperatures: (a) 400 K; (b) 500 K; (c) 600 K; (d) 700 K.

    图 9  不同温度下Cu-ZnO复合电极的界面热导

    Figure 9.  Interfacial thermal conductivity of Cu-ZnO composite electrodes at different temperatures.

    图 10  不同温度下各组分的声子态密度 (a), (b) 300 K; (c), (d) 400 K; (e), (f) 500 K; (g), (h) 600 K

    Figure 10.  Phonon density of states for each component at different temperatures: (a), (b) 300 K; (c), (d) 400 K; (e), (f) 500 K; (g), (h) 600 K.

    图 11  不同温度下, Cu-ZnO和Cu-TiO2界面的声子参与率 (a) 300 K; (b) 600 K

    Figure 11.  Phonon participation at Cu-ZnO and Cu-TiO2 interfaces at different temperatures: (a) 300 K; (b) 600 K.

    表 1  ZnO的势函数参数[27]

    Table 1.  Potential function parameters of ZnO[27].

    Aij/(kcal·mol–1)Bij/(kcal·mol–1·Å6)ρij
    Zn—Zn1819.710.000.5177
    Zn—O59403960.000.1396
    O—O271720696.950.235
    DownLoad: CSV
    Baidu
  • [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358Google Scholar

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156Google Scholar

    [3]

    Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465Google Scholar

    [4]

    Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505Google Scholar

    [5]

    Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342Google Scholar

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666Google Scholar

    [7]

    Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671Google Scholar

    [8]

    Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chin. J. Catal. 41 1613Google Scholar

    [9]

    Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34Google Scholar

    [10]

    桑丽霞, 马梦楠 2023 高等学校化学学报 44 20220768Google Scholar

    Sang L X, Ma M N 2023 Chem. J. Chin. Uiv. 44 20220768Google Scholar

    [11]

    桑丽霞, 李志康 2024 73 103105Google Scholar

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103105Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energy 47 23570Google Scholar

    [14]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [15]

    Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302Google Scholar

    [16]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768Google Scholar

    [17]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 72 034401Google Scholar

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [18]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105Google Scholar

    [19]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857Google Scholar

    [20]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564Google Scholar

    [21]

    Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar

    [22]

    Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Transfer 50 3977Google Scholar

    [23]

    Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303Google Scholar

    [24]

    Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320Google Scholar

    [25]

    Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804Google Scholar

    [26]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640Google Scholar

    [27]

    Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472Google Scholar

    [30]

    Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853Google Scholar

    [31]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372Google Scholar

    [32]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113Google Scholar

    [33]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796Google Scholar

    [34]

    Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301Google Scholar

    [35]

    刘东静, 王韶铭, 杨平 2021 70 187302Google Scholar

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302Google Scholar

    [36]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250Google Scholar

    [37]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401Google Scholar

Metrics
  • Abstract views:  1374
  • PDF Downloads:  31
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2025
  • Accepted Date:  12 July 2025
  • Available Online:  12 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回
    Baidu
    map