Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Band structure of high O/Ga ratio a-GaOx and its electron transport mechanism at metal-semiconductor interface

TIAN Kun KONG Le DENG Jinxiang ZHANG Qing MENG Xue WU Rui XU Jiawei LIU Weiman YANG Xiaolei

Citation:

Band structure of high O/Ga ratio a-GaOx and its electron transport mechanism at metal-semiconductor interface

TIAN Kun, KONG Le, DENG Jinxiang, ZHANG Qing, MENG Xue, WU Rui, XU Jiawei, LIU Weiman, YANG Xiaolei
cstr: 32037.14.aps.74.20241571
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Amorphous gallium oxide (a-GaOx) exhibits excellent electrical conductivity, a wide bandgap, high breakdown field strength, high visible light transmittance, high sensitivity to specific ultraviolet wavelengths, low preparation temperatures, relatively simple processing, wide substrate applicability, and ease of obtaining high-quality thin films. These attributes make it a suitable candidate for applications in transparent electronic devices, ultraviolet detectors, high-power devices, and gas sensors. Presently, the research on a-GaOx remains limited, focusing primarily on films with an O/Ga ratio less than or equal to 1.5. Increasing the concentration of oxygen vacancies to enhance the conductivity of the material often leads to a reduction in its bandgap, which is undesirable for high-power applications. Variations in O/Ga in the films can affect the formation of chemical bonds and significantly influence the band structure. In this study, five groups of a-GaOx thin films with high oxygen-to-gallium ratios are successfully fabricated by increasing the gas flow rate at low sputtering power. The elemental compositions of the films are analyzed using energy dispersive spectroscopy (EDS), revealing the O/Ga ratio gradually decreasing from 3.89 to 3.39. Phase analysis by using X-ray diffraction (XRD) confirms the amorphous nature of the films. Optical properties are characterized using an ultraviolet-visible spectrophotometer (UV-Vis), indicating that the optical bandgap and the density of localized states gradually increase. X-ray photoelectron spectroscopy (XPS) is utilized to analyze the elemental compositions, chemical states, and valence band structures of the films, showing that the valence band maximum decreases and the content of Ga2O within the material increases. Subsequently, Au/a-GaOx/Ti/Au Schottky devices are fabricated under the same processing conditions. The I-V characteristics of these devices are measured using a Keithley 4200, revealing changes in the electron transport mechanism at the metal-semiconductor (MS) interface, with the gradual increase in electron affinity calculated. C-V characteristics are measured using a Keithley 590, and the donor concentration (density of localized states) at the interface is calculated to gradually increase. In summary, by controlling appropriate process parameters, it is possible to improve the conductivity of electronic devices while increasing the bandgap of a-GaOx, which is significant for high-power applications.
      Corresponding author: DENG Jinxiang, jdeng@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62204234).
    [1]

    Wang Y F, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 J. Mater. Chem. C 10 13395Google Scholar

    [2]

    Wang Y F, Xue Y X, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 Mater. Today Adv. 16 100324Google Scholar

    [3]

    Peelaers H, Van de Walle C G 2015 Phys. Status Solidi (a) 252 828Google Scholar

    [4]

    Segura A, Artús L, Cuscó R, Goldhahn R, Feneberg M 2017 Phys. Rev. Mater. 1 024604Google Scholar

    [5]

    Vu T K O, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar

    [6]

    Feng X J, Li Z, Mi W, Luo Y, Ma J 2015 Mater. Sci. Semicond. Process. 34 52Google Scholar

    [7]

    He W, Wang Z X, Zheng T, Wang L Y, Zheng S W 2021 J. Electron. Mater. 50 3856Google Scholar

    [8]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Xie W F 2011 Mater. Sci. Eng. B 176 846Google Scholar

    [9]

    Tak B, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A, Nagarajan S, Singh R 2019 Appl. Surf. Sci. 465 973Google Scholar

    [10]

    Kim B G 2021 J. Korean Phys. Soc. 79 946Google Scholar

    [11]

    Cui S J, Mei Z X, Zhang Y H, Liang H L, Du X L 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [12]

    Zhang F, Li H, Cui Y T, Li G L, Guo Q 2018 AIP Adv. 8 045112Google Scholar

    [13]

    Zhu W H, Xiong L L, Si J W, Hu Z L, Gao X, Long L Y, Li T, Wan R Q, Zhang L, Wang L C 2020 Semicond. Sci. Technol. 35 055037Google Scholar

    [14]

    An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L, Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111Google Scholar

    [15]

    Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D, Ye J D 2019 Chin. Phys. B 28 028501Google Scholar

    [16]

    Tian R, Pan M, Sai Q, Zhang L, Qi H, Mohamed H F 2022 Crystals 12 429Google Scholar

    [17]

    Akiyama T, Kawamura T, Ito T 2023 Appl. Phys. Express 16 015508Google Scholar

    [18]

    Li W X, Wan J X, Tu Z X, Li H, Wu H, Liu C 2022 Ceram. Int. 48 3185Google Scholar

    [19]

    Heinemann M D, Berry J, Teeter G, Unold T, Ginley D 2016 Appl. Phys. Lett. 108 022107Google Scholar

    [20]

    Zhang J L, Yuan Y D, Yang X T, Zheng Y J, Zhang H G, Zeng G G 2023 J. Phys. D: Appl. Phys. 56 085103Google Scholar

    [21]

    Ding J Q, Liu Y, Gu X Y, Zhang L, Zhang X D, Chen X, Liu W J, Cai Y, Guo S S, Sun C L 2024 Physica B 682 415888Google Scholar

    [22]

    Lyle L A, Back T C, Bowers C T, Green A J, Chabak K D, Dorsey D L, Heller E R, Porter L M 2021 APL Mater. 9 061104Google Scholar

    [23]

    Gopalan P, Knight S, Chanana A, Stokey M, Ranga P, Scarpulla M A, Krishnamoorthy S, Darakchieva V, Galazka Z, Irmscher K 2020 Appl. Phys. Lett. 117 252103Google Scholar

  • 图 1  a-GaOx薄膜X射线衍射图谱

    Figure 1.  X-ray diffraction pattern of a-GaOx thin film.

    图 2  (a) a-GaOx薄膜的紫外-可见光吸收率曲线; (b) a-GaOx薄膜的$ h\nu{\text{-}}{\left( {\alpha h\nu} \right)^2} $关系曲线; (c) a-GaOx薄膜的$ \ln \alpha {\text{-}}h\nu $关系曲线

    Figure 2.  (a) Ultraviolet-visible light absorption curve of a-GaOx thin film; (b) the $ h\nu{\text{-}}{\left( {\alpha h\nu} \right)^2} $ relationship curve of a-GaOx thin film; (c) the $ \ln \alpha {\text{-}}h\nu $ relationship curve of a-GaOx thin film.

    图 3  (a) a-GaOx薄膜的XPS价带谱; (b) a-GaOx薄膜的价带顶能量值

    Figure 3.  (a) XPS valence band spectrum of a-GaOx thin films; (b) valence of a-GaOx film with the maximum energy value.

    图 4  (a)—(e) a-GaOx薄膜O 1s的XPS图谱; (f)—(j) a-GaOx薄膜Ga 3d XPS图谱

    Figure 4.  (a)–(e) O 1s XPS spectra of a-GaOx thin film; (f)–(j) Ga 3d XPS spectra of a-GaOx thin film.

    图 5  a-GaOx Schottky器件 (a)结构图; (b) J-V特性曲线; (c) lnJ-V特性曲线; (d) $1/C^2\text{-}V$特性曲线

    Figure 5.  The a-GaOx Schottky device: (a) Structure; (b) J-V curves; (c) lnJ-V curves; (d) $1/C^2\text{-}V $ curves.

    图 6  Au/a-GaOx界面处能带结构示意图

    Figure 6.  Schematic diagram of the band structure at the Au/a-GaOx interface.

    图 7  (a) TLM结构示意图; (b) a-GaOxRtatal -L关系图

    Figure 7.  (a) Schematic diagram of TLM structure; (b) diagrams Rtatal -L of a-GaOx.

    表 1  a-GaOx中各元素原子百分比与O/Ga比

    Table 1.  Percentage of atoms of each element and O/Ga ratio in a-GaOx.

    样品 O/% Ga/% Si/% O/Ga比 氧气流量
    /(cm3·min–1)
    N1 79.31 20.37 0.32 3.89 0
    N2 77.33 21.19 1.48 3.64 2
    N3 77.11 21.57 1.32 3.57 3
    N4 77.37 21.73 0.91 3.56 4
    N5 76.60 22.57 0.83 3.39 5
    DownLoad: CSV

    表 2  a-GaOxEgEU

    Table 2.  Eg and EU of a-GaOx.

    样品 N1 N2 N3 N4 N5
    Eg/eV 5.200 5.237 5.271 5.277 5.282
    EU/eV 0.337 0.349 0.408 0.411 0.422
    O/Ga比 3.89 3.64 3.57 3.56 3.39
    氧气流量/(cm3·min–1) 0 2 3 4 5
    DownLoad: CSV

    表 3  a-GaOx的氧空位浓度与Ga1+浓度

    Table 3.  Oxygen vacancy concentration and Ga1+ concentration in a-GaOx.

    样品S1S2S3S4S5
    O/Ga比3.893.643.573.563.39
    氧空位浓度/%3635384038
    Ga1+浓度/%5862676876
    DownLoad: CSV

    表 4  Au/a-GaOx界面的理想因子n与势垒$ {\varphi _{{\text{Bn}}}} $

    Table 4.  Ideal factors n and potential barriers $ {\varphi _{{\text{Bn}}}} $ of Au/ a-GaOx interface.

    样品 S1 S2 S3 S4 S5
    n 1.663 1.397 1.041 1.395 0.923
    $ {\varphi _{{\text{Bn}}}} $/V 0.867 0.866 0.812 0.803 0.797
    $ q\chi $/eV 4.233 4.234 4.288 4.297 4.303
    $ {R_{{\text{on, sp}}}} $/(Ω·cm2) 1483 413 332 305 208
    DownLoad: CSV

    表 5  a-GaOx的TLM结构的接触电阻率rc与片电阻Rsheet

    Table 5.  Contact resistivity rc and chip resistance Rsheet of the TLM structure of a-GaOx.

    样品 M1 M2 M3 M4 M5
    rc/(Ω·mm) 2.63×109 2.71×109 2.17×109 2.08×109 1.70×109
    Rsheet/
    (Ω·square–1)
    1.33×1010 7.94×109 5.94×109 4.16×109 3.39×109
    DownLoad: CSV
    Baidu
  • [1]

    Wang Y F, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 J. Mater. Chem. C 10 13395Google Scholar

    [2]

    Wang Y F, Xue Y X, Su J, Lin Z H, Zhang J C, Chang J J, Hao Y 2022 Mater. Today Adv. 16 100324Google Scholar

    [3]

    Peelaers H, Van de Walle C G 2015 Phys. Status Solidi (a) 252 828Google Scholar

    [4]

    Segura A, Artús L, Cuscó R, Goldhahn R, Feneberg M 2017 Phys. Rev. Mater. 1 024604Google Scholar

    [5]

    Vu T K O, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar

    [6]

    Feng X J, Li Z, Mi W, Luo Y, Ma J 2015 Mater. Sci. Semicond. Process. 34 52Google Scholar

    [7]

    He W, Wang Z X, Zheng T, Wang L Y, Zheng S W 2021 J. Electron. Mater. 50 3856Google Scholar

    [8]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Xie W F 2011 Mater. Sci. Eng. B 176 846Google Scholar

    [9]

    Tak B, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A, Nagarajan S, Singh R 2019 Appl. Surf. Sci. 465 973Google Scholar

    [10]

    Kim B G 2021 J. Korean Phys. Soc. 79 946Google Scholar

    [11]

    Cui S J, Mei Z X, Zhang Y H, Liang H L, Du X L 2017 Adv. Opt. Mater. 5 1700454Google Scholar

    [12]

    Zhang F, Li H, Cui Y T, Li G L, Guo Q 2018 AIP Adv. 8 045112Google Scholar

    [13]

    Zhu W H, Xiong L L, Si J W, Hu Z L, Gao X, Long L Y, Li T, Wan R Q, Zhang L, Wang L C 2020 Semicond. Sci. Technol. 35 055037Google Scholar

    [14]

    An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L, Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111Google Scholar

    [15]

    Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D, Ye J D 2019 Chin. Phys. B 28 028501Google Scholar

    [16]

    Tian R, Pan M, Sai Q, Zhang L, Qi H, Mohamed H F 2022 Crystals 12 429Google Scholar

    [17]

    Akiyama T, Kawamura T, Ito T 2023 Appl. Phys. Express 16 015508Google Scholar

    [18]

    Li W X, Wan J X, Tu Z X, Li H, Wu H, Liu C 2022 Ceram. Int. 48 3185Google Scholar

    [19]

    Heinemann M D, Berry J, Teeter G, Unold T, Ginley D 2016 Appl. Phys. Lett. 108 022107Google Scholar

    [20]

    Zhang J L, Yuan Y D, Yang X T, Zheng Y J, Zhang H G, Zeng G G 2023 J. Phys. D: Appl. Phys. 56 085103Google Scholar

    [21]

    Ding J Q, Liu Y, Gu X Y, Zhang L, Zhang X D, Chen X, Liu W J, Cai Y, Guo S S, Sun C L 2024 Physica B 682 415888Google Scholar

    [22]

    Lyle L A, Back T C, Bowers C T, Green A J, Chabak K D, Dorsey D L, Heller E R, Porter L M 2021 APL Mater. 9 061104Google Scholar

    [23]

    Gopalan P, Knight S, Chanana A, Stokey M, Ranga P, Scarpulla M A, Krishnamoorthy S, Darakchieva V, Galazka Z, Irmscher K 2020 Appl. Phys. Lett. 117 252103Google Scholar

Metrics
  • Abstract views:  2074
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2024
  • Accepted Date:  13 April 2025
  • Available Online:  10 May 2025
  • Published Online:  05 July 2025
  • /

    返回文章
    返回
    Baidu
    map