Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on vibrational features of CL-20/MTNP cocrystal by terahertz spectroscopy

Liu Quan-Cheng Yang Fu Zhang Qi Duan Yong-Wei Deng Hu Shang Li-Ping

Citation:

Research on vibrational features of CL-20/MTNP cocrystal by terahertz spectroscopy

Liu Quan-Cheng, Yang Fu, Zhang Qi, Duan Yong-Wei, Deng Hu, Shang Li-Ping
cstr: 32037.14.aps.73.20240944
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Cocrystals represent an effective method to manipulate the physicochemical properties of materials at a molecular level. However, understanding the relationship between their complex crystal structures and macroscopic properties is a challenge. In this paper, by using terahertz (THz) spectroscopy to characterize non-covalent interactions within crystals, the THz vibrational spectra of the CL-20/MTNP cocrystal are studied. Firstly, the THz spectra of CL-20, MTNP, and the CL-20/MTNP cocrystal are measured at room temperature. Both absorption positions and intensities of the cocrystals differ from those of their original components, confirming the unique advantage of terahertz spectroscopy in cocrystal identification. Secondly, the THz vibrational features of the three materials are calculated based on density functional theory (DFT). Then, the experimental absorptions are matched with the calculated vibrations. Furthermore, a vibrational decomposition method is employed to decompose the molecular vibrations into intermolecular and intramolecular vibrations. The vibrational variations of the cocrystal compared with its original components are analyzed. The results reveal that in the cocrystal, the intermolecular vibrational modes of both CL-20 and MTNP molecules have changed compared with their raw materials. This indicates that the non-covalent interactions in the cocrystal have changed the original intermolecular interactions of these molecules. Consequently, this enhancement promotes the heat transfer between MTNP and CL-20 molecules, thereby improving the thermal stability of the cocrystal. These findings in this study demonstrate that the THz vibrational spectroscopy technology helps establish a relationship between the molecular structure of cocrystal and its macroscopic properties. This research contributes to deepening our understanding of cocrystal systems and opens up a new way for designing and optimizing materials.
      Corresponding author: Liu Quan-Cheng, liuqc@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22305198) and the Doctoral Foundation of Southwest University of Science and Technology, China (Grant No. 21ZX7143).
    [1]

    Sun L J, Zhu W G, Zhang X T, Li L Q, Dong H L, Hu W P 2021 J. Am. Chem. Soc. 143 19243Google Scholar

    [2]

    Charpentier M D, Devogelaer J J, Tijink A, Meekes H, Tinnemans P, Vlieg E, de Gelder R, Johnston K, Ter Horst J H 2022 Cryst. Growth Des. 22 5511Google Scholar

    [3]

    Li X Y, Jin B, Luo L Q, Chu S J, Peng R F 2020 Thermochim. Acta 690 178665Google Scholar

    [4]

    Garbacz P, Wesolowski M 2020 Spectrochim. Acta Part A 234 118242Google Scholar

    [5]

    Zhang Y W, Ren G H, Su X Q, Meng T H, Zhao G Z 2022 Chin. Phys. B 31 103302Google Scholar

    [6]

    Wang C, Wang B, Wei G S, Chen J N, Wang L 2022 Chin. Phys. B 31 104201Google Scholar

    [7]

    Ruggiero M T 2020 J. Infrared Millim. Te. 41 491Google Scholar

    [8]

    Luczynska K, Druzbicki K, Runka T, Palka N, Wasicki J 2019 J. Infrared Millim. Te. 43 845Google Scholar

    [9]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 72 173201Google Scholar

    Zheng Z P, Liu Y H, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [10]

    Davis M P, Mohara M, Shimura K, Korter T M 2020 J. Phys. Chem. A 124 9793Google Scholar

    [11]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H W, Yang X C, Yang X N, Sun X H, He M X 2022 Int. J. Pharm. 620 121759Google Scholar

    [12]

    Xiao Y Y, Huang H, Zhao X Y, Zou P A J, Wei L Y, Liu Y, Jin B, Peng R F, Huang S L 2023 Cryst. Growth Des. 23 6393Google Scholar

    [13]

    Ma Q, Jiang T, Chi Y, Chen Y, Wang J, Huang J L, Nie F D 2017 New J. Chem. 41 4165Google Scholar

    [14]

    Clark S J, Segallii M, Pickardii C J, Hasnipiii P J, Probertiv M 2005 Z. Kristallogr. Cryst. Mater. 220 567Google Scholar

    [15]

    Banks P, Burgess L, Ruggiero M 2021 Phys. Chem. Chem. Phys. 23 20038Google Scholar

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [17]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [18]

    King M D, Buchanan W D, Korter T M 2011 Phys. Chem. Chem. Phys. 13 4250Google Scholar

    [19]

    Jepsen P U, Clark S J 2007 Chem. Phys. Lett. 442 275Google Scholar

    [20]

    Liu Q C, Deng H, Li H Z, Wang M C, Zahng Q, Kang Y, Shang L P 2022 Spectrochim. Acta A 283 121722Google Scholar

  • 图 1  三种物质的太赫兹吸收光谱和DFT计算结果(虚线表示主要的吸收峰位置) (a) CL-20; (b) MTNP; (c) CL-20/MTNP

    Figure 1.  THz spectra and DFT calculations of the three materials (The dashed lines represent the main absorption positions): (a) CL-20; (b) MTNP; (c) CL-20/MTNP.

    图 2  三种物质的振动模式图 (a) CL-20在1.33 THz; (b) MTNP在0.88 THz; (c) CL-20/MTNP在3.08 THz. 为了清晰, 仅展示晶胞中的一个分子, 其中灰、白、红、蓝色分别表示碳、氢、氧、氮原子

    Figure 2.  Vibration mode of the three materails: (a) CL-20 at 1.33 THz; (b) MTNP at 0.88 THz; (c) CL-20/MTNP at 3.08 THz. For clarity, only one molecule within the unit cell is shown. Gray, white, red, and blue colors represent carbon, hydrogen, oxygen, and nitrogen atoms, respectively.

    图 3  三种分子振动模式分解结果 (a) CL-20分子; (b) MTNP分子; (c) CL-20/MTNP共晶分子

    Figure 3.  Decomposition results of three molecular vibration modes: (a) CL-20; (b) MTNP; (c) CL-20/MTNP cocrystal.

    图 4  共晶前后分子内基团的振动变化 (a) CL-20分子; (b) MTNP分子

    Figure 4.  Vibrational variations of functional groups after cocrystallization: (a) CL-20; (b) MTNP.

    表 1  结构优化后晶格参数对比

    Table 1.  Comparison of lattice parameters after structural optimization.

    Lattice parametersCL-20/%MTNP/%CL-20/MTNP/%
    Angle α/(°)0.000.000.00
    Angle β/(°)0.710.000.06
    Angle γ/(°)0.000.000.00
    Length a–0.03–0.37–0.39
    Length b–0.36–0.400.49
    Length c–0.020.120.05
    Volume V3–0.81–0.650.12
    DownLoad: CSV

    表 2  三种物质太赫兹吸收中心位置与DFT计算结果

    Table 2.  Experiment absorption center and DFT calculations of the three materials.

    CL-20 MTNP CL-20/MTNP
    Exp. Cal. Δf Exp. Cal. Δf Exp. Cal. Δf
    0.99 0.88(0.98) 0.11 0.59 0.53(1.91) 0.06 1.04 0.92(1.87) 0.12
    1.31 1.33(1.47) 0.02 0.96 0.88(5.21) 0.07 1.28 1.26(2.97) 0.02
    1.43 1.43(1.62) 0 0.91(5.22) 1.53 1.57(5.65) 0.04
    2.08 2.07(4.25) 0.01 1.40 1.54(5.52) 0.14 2.11 1.97(4.04) 0.01
    2.50 2.68(6.59) 0.18 1.81 1.77(4.42) 0.04 2.24(3.99)
    2.70 2.75(7.11) 0.05 2.18 2.16(9.05) 0.02 2.62 2.54(10.70) 0.08
    3.75 3.48(12.88) 0.27 2.86 2.83(12.37) 0.03 3.34 3.08(10.66) 0.10
    3.53 3.41(7.45) 0.12 3.40(16.55)
    注: Exp. , Experiment/THz; Cal., Calculation/THz (km · mol–1); Δf , deviation between experiment and calculation.
    DownLoad: CSV
    Baidu
  • [1]

    Sun L J, Zhu W G, Zhang X T, Li L Q, Dong H L, Hu W P 2021 J. Am. Chem. Soc. 143 19243Google Scholar

    [2]

    Charpentier M D, Devogelaer J J, Tijink A, Meekes H, Tinnemans P, Vlieg E, de Gelder R, Johnston K, Ter Horst J H 2022 Cryst. Growth Des. 22 5511Google Scholar

    [3]

    Li X Y, Jin B, Luo L Q, Chu S J, Peng R F 2020 Thermochim. Acta 690 178665Google Scholar

    [4]

    Garbacz P, Wesolowski M 2020 Spectrochim. Acta Part A 234 118242Google Scholar

    [5]

    Zhang Y W, Ren G H, Su X Q, Meng T H, Zhao G Z 2022 Chin. Phys. B 31 103302Google Scholar

    [6]

    Wang C, Wang B, Wei G S, Chen J N, Wang L 2022 Chin. Phys. B 31 104201Google Scholar

    [7]

    Ruggiero M T 2020 J. Infrared Millim. Te. 41 491Google Scholar

    [8]

    Luczynska K, Druzbicki K, Runka T, Palka N, Wasicki J 2019 J. Infrared Millim. Te. 43 845Google Scholar

    [9]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 72 173201Google Scholar

    Zheng Z P, Liu Y H, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [10]

    Davis M P, Mohara M, Shimura K, Korter T M 2020 J. Phys. Chem. A 124 9793Google Scholar

    [11]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H W, Yang X C, Yang X N, Sun X H, He M X 2022 Int. J. Pharm. 620 121759Google Scholar

    [12]

    Xiao Y Y, Huang H, Zhao X Y, Zou P A J, Wei L Y, Liu Y, Jin B, Peng R F, Huang S L 2023 Cryst. Growth Des. 23 6393Google Scholar

    [13]

    Ma Q, Jiang T, Chi Y, Chen Y, Wang J, Huang J L, Nie F D 2017 New J. Chem. 41 4165Google Scholar

    [14]

    Clark S J, Segallii M, Pickardii C J, Hasnipiii P J, Probertiv M 2005 Z. Kristallogr. Cryst. Mater. 220 567Google Scholar

    [15]

    Banks P, Burgess L, Ruggiero M 2021 Phys. Chem. Chem. Phys. 23 20038Google Scholar

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [17]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [18]

    King M D, Buchanan W D, Korter T M 2011 Phys. Chem. Chem. Phys. 13 4250Google Scholar

    [19]

    Jepsen P U, Clark S J 2007 Chem. Phys. Lett. 442 275Google Scholar

    [20]

    Liu Q C, Deng H, Li H Z, Wang M C, Zahng Q, Kang Y, Shang L P 2022 Spectrochim. Acta A 283 121722Google Scholar

  • supplement 19-20240944Suppl.pdf supplement
Metrics
  • Abstract views:  2943
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2024
  • Accepted Date:  26 August 2024
  • Available Online:  04 September 2024
  • Published Online:  05 October 2024
  • /

    返回文章
    返回
    Baidu
    map