Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics and impurity spectral characteristics of coaxial gun discharge plasma

Qi Liang-Wen Du Man-Qiang Wen Xiao-Dong Song Jian Yan Hui-Jie

Citation:

Dynamics and impurity spectral characteristics of coaxial gun discharge plasma

Qi Liang-Wen, Du Man-Qiang, Wen Xiao-Dong, Song Jian, Yan Hui-Jie
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The coaxial gun discharge can produce plasma jet with high velocity, high density and high energy density, and has extensive applications, such as in plasma space propulsion, simulation of the interaction between edge local mode and wall materials in ITER, fuel injection in magnetic confinement fusion devices, and laboratory astrophysics. In the pre-filled discharge mode or snowplow mode, the plasma current sheet is formed near the insulating layer surface and moves toward the end of the coaxial gun under Lorentz force. Plasma velocity, density and purity characteristics are very important research contents for the actual applications of coaxial gun. Emission spectrometry as a non-interference method can be used to diagnose a variety of plasma physical properties.In this experiment, the effects of different discharge currents and gas pressures on the plasma dynamics, electron density and impurity emission spectra of coaxial gun discharge plasma are studied through the measurement of plasma photocurrent, emission spectra and the shooting of discharge images. The experimental results show that the acceleration time of the plasma in the gun decreases with current increasing in a range of 30–70 kA when the gas pressure is 10 Pa, the spectral intensity of anode and cathode impurities in plasma increase with current amplitude increasing. When the discharge current is 40 kA and the gas pressure is in a range of 10–70 Pa, the acceleration time of plasma increases with gas pressure rising, and the spectral intensity of the cathode impurity in the plasma decreases with the pressure increasing, while the spectral intensity of the anode impurity increases gradually, but its growth rate decreases continuously. The analysis indicates that the presence of metallic impurities originating from the electrode material limits the jet velocity of the plasma and is the main cause of the deviation from theoretical value. The plasma pinch effect at the nozzle of coaxial gun and the acceleration time of high-density arc in the gun are important factors affecting anode ablation. The impurity of cathode material is produced by ion bombardment sputtering, which mainly depends on the energy carried by ions. Therefore, a reasonable choice for discharge parameters is the key factor to obtain optimal plasma characteristics during the discharge of the coaxial gun.
      Corresponding author: Qi Liang-Wen, 18742509171@163.com
    • Funds: Project supported by the Fourth Batch of Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University, China (Grant No. 1520260419).
    [1]

    Hammer J H, Hartman C W, Eddleman J L, McLean H S 1988 Phys. Rev. Lett. 61 2843Google Scholar

    [2]

    Hammer J H, Eddleman J L, Hartman C W, McLean H S, Molvik A W 1991 Phys. Fluids B 3 2236Google Scholar

    [3]

    Skvortsov Y V 1992 Phys. Fluids B 4 750Google Scholar

    [4]

    Black D C, Mayo R M, Gerwin R A, Schoenberg K F, Scheuer J T, Hoyt R P, Henins I 1994 Phys. Plasmas 1 3115Google Scholar

    [5]

    Sadowski M J, Scholz M 2008 Plasma Sources Sci. Technol. 17 024001Google Scholar

    [6]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [7]

    Tereshin V I, Bandura A N, Byrka O V, Chebotarev V V, Garkusha I E, Landman I, Makhlaj V A, Neklyudov I M, Solyakov D G, Tsarenko A V 2007 Plasma Phys. Controlled Fusion 49 A231Google Scholar

    [8]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [9]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2014 J. Plasma Phys. 81 345810201Google Scholar

    [10]

    Wiechula J, Schoenlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv. 6 075313Google Scholar

    [11]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [12]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [13]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 63 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 63 035203Google Scholar

    [14]

    Poehlmann F R 2010 Ph. D. Dissertation (Stamford: Stanford University

    [15]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [16]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [17]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [18]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [19]

    Rabiński M, Zdunek K 2007 Surf. Coat. Technol. 201 5438Google Scholar

    [20]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [21]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [22]

    Wang Z, Beinke P D, Barnes C W, Michael W M, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [23]

    Brown M R, Bailey Iii A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [26]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [27]

    Ashkenazy J, Kipper R, Caner M 1991 Phys. Rev. A 43 5568Google Scholar

    [28]

    Zhao C X, Song J, Qi L W, Ma C Y, Hu J J, Bai X D, Wang D Z 2020 Fusion Eng. Des. 158 111870Google Scholar

    [29]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [30]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [31]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D: Appl. Phys. 40 1944Google Scholar

  • 图 1  实验装置与诊断原理图

    Figure 1.  Schematic of experimental setup and diagnosis principle.

    图 2  在气压为10 Pa, 不同放电电压下同轴枪的电流、光电流波形图 (a) 3 kV; (b) 4 kV; (c) 6 kV; (d) 7 kV

    Figure 2.  Waveforms of current and photodiode signals for coaxial gun discharge at the pressure 10 Pa with different voltages: (a) 3 kV; (b) 4 kV; (c) 6 kV; (d) 7 kV.

    图 3  气压为10 Pa, 不同放电电流下等离子体理论速度与实验速度对比

    Figure 3.  Theoretical and experimental velocities of the plasma versus discharge current at a pressure of 10 Pa.

    图 4  在充电电压4 kV, 不同气压下同轴枪的电流、光电流波形图 (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa

    Figure 4.  Waveforms of current and photodiode signals for coaxial gun discharge with the applied voltage of 4 kV at different pressure: (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa.

    图 5  电流为40 kA, 不同气压下等离子体理论速度与实验速度对比

    Figure 5.  Theoretical and experimental velocities of the plasma versus pressure at the discharge current of 40 kA.

    图 6  在充电电压4 kV, 不同气压下同轴枪的放电照片 (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa

    Figure 6.  Photographs for coaxial gun discharge with the applied voltage of 4 kV at different pressures: (a) 10 Pa; (b) 30 Pa; (c) 50 Pa; (d) 70 Pa.

    图 7  在充电电压4 kV, 氩气气压10 Pa放电条件下测得的同轴枪(a)发射光谱和(b) Hβ谱线拟合

    Figure 7.  (a) Emission spectrum and (b) fitting of Hβ spectrum measured for coaxial gun discharge in argon with the applied voltage of 4 kV and pressure of 10 Pa.

    图 8  气压为10 Pa, 等离子体电子密度随放电电流的变化

    Figure 8.  Electron density versus discharge current at a pressure of 10 Pa.

    图 9  放电电流40 kA, 等离子体电子密度随气压的变化

    Figure 9.  Electron density versus pressure at the discharge current of 40 kA.

    图 10  (a) 加速和(b) 喷射阶段等离子体动力学特征示意图

    Figure 10.  Schematic diagram of plasma dynamics during (a) acceleration and (b) ejection stages.

    图 11  氩气条件下, 同轴枪放电等离子体中Ti I 453.32 nm, Cu I 521.82 nm 和 Cu II 589 nm的光谱谱线

    Figure 11.  Spectra of Ti I 453.32 nm, Cu I 521.82 nm and Cu II 589 nm for coaxial gun discharge in argon.

    图 12  气压为10 Pa条件下, 等离子体中杂质光谱强度随放电电流的变化

    Figure 12.  Spectral intensity of impurities in plasma versus discharge current under the condition with pressure of 10 Pa.

    图 13  放电电流为40 kA条件下, 等离子体中杂质光谱强度随工作气压的变化

    Figure 13.  Spectral intensity of impurities in plasma versus working pressure at discharge current of 40 kA.

    Baidu
  • [1]

    Hammer J H, Hartman C W, Eddleman J L, McLean H S 1988 Phys. Rev. Lett. 61 2843Google Scholar

    [2]

    Hammer J H, Eddleman J L, Hartman C W, McLean H S, Molvik A W 1991 Phys. Fluids B 3 2236Google Scholar

    [3]

    Skvortsov Y V 1992 Phys. Fluids B 4 750Google Scholar

    [4]

    Black D C, Mayo R M, Gerwin R A, Schoenberg K F, Scheuer J T, Hoyt R P, Henins I 1994 Phys. Plasmas 1 3115Google Scholar

    [5]

    Sadowski M J, Scholz M 2008 Plasma Sources Sci. Technol. 17 024001Google Scholar

    [6]

    Baker K L, Hwang D Q, Evans R W, Horton R D, McLean H S, Terry S D, Howard S, DiCaprio C J 2002 Nucl. Fusion 42 94Google Scholar

    [7]

    Tereshin V I, Bandura A N, Byrka O V, Chebotarev V V, Garkusha I E, Landman I, Makhlaj V A, Neklyudov I M, Solyakov D G, Tsarenko A V 2007 Plasma Phys. Controlled Fusion 49 A231Google Scholar

    [8]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [9]

    Hsu S C, Moser A L, Merritt E C, Adams C S, Dunn J P, Brockington S, Case A, Gilmore M, Lynn A G, Messer S J, Witherspoon F D 2014 J. Plasma Phys. 81 345810201Google Scholar

    [10]

    Wiechula J, Schoenlein A, Iberler M, Hock C, Manegold T, Bohlender B, Jacoby J 2016 AIP Adv. 6 075313Google Scholar

    [11]

    Zhang Y, Fisher D M, Gilmore M, Hsu S C, Lynn A G 2018 Phys. Plasmas 25 055709Google Scholar

    [12]

    Woodall D M, Len L K 1985 J. Appl. Phys. 57 961Google Scholar

    [13]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 63 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 63 035203Google Scholar

    [14]

    Poehlmann F R 2010 Ph. D. Dissertation (Stamford: Stanford University

    [15]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wan T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [16]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [17]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [18]

    Rabiński M, Zdunek K 2003 Vacuum 70 303Google Scholar

    [19]

    Rabiński M, Zdunek K 2007 Surf. Coat. Technol. 201 5438Google Scholar

    [20]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [21]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [22]

    Wang Z, Beinke P D, Barnes C W, Michael W M, Mignardot E, Wurden G A, Hsu S C, Intrator T P, Munson C P 2005 Rev. Sci. Instrum. 76 033501Google Scholar

    [23]

    Brown M R, Bailey Iii A D, Bellan P M 1991 J. Appl. Phys. 69 6302Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

    [26]

    Qian M Y, Ren C S, Wang D Z, Zhang J L, Wei G D 2010 J. Appl. Phys. 107 063303Google Scholar

    [27]

    Ashkenazy J, Kipper R, Caner M 1991 Phys. Rev. A 43 5568Google Scholar

    [28]

    Zhao C X, Song J, Qi L W, Ma C Y, Hu J J, Bai X D, Wang D Z 2020 Fusion Eng. Des. 158 111870Google Scholar

    [29]

    Liu S, Huang Y Z, Zhang Y P, Zhan W, Yu M H, Yang L J 2018 Phys. Plasmas 25 113505Google Scholar

    [30]

    宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真 2021 70 105201Google Scholar

    Song J, Lee J W, Bai X D, Zhang J S, Yan H J, Xiao Q M, Wang D Z 2021 Acta Phys. Sin. 70 105201Google Scholar

    [31]

    Chau S W, Hsu K L, Lin D L, Tzeng C C 2007 J. Phys. D: Appl. Phys. 40 1944Google Scholar

Metrics
  • Abstract views:  3426
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2024
  • Accepted Date:  01 August 2024
  • Available Online:  23 August 2024
  • Published Online:  20 September 2024
  • /

    返回文章
    返回
    Baidu
    map