Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of seepage behaviour in binary two-layer coupled networks

Gao Yan-Li Xu Wei-Nan Zhou Jie Chen Shi-Ming

Citation:

Analysis of seepage behaviour in binary two-layer coupled networks

Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming
cstr: 32037.14.aps.73.20240454
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Existing research on interdependent networks defines network functionality as being entirely on nodes or on edges, which means interdependence between nodes and nodes, or interdependence between edges and edges. However, the reality is not characterized solely by interdependence between functionalities of individual elements, which means that it is not entirely a single-element coupled network. In some cases, nodes and edges are interdependent. Considering this reality, a binary interdependent network model with node and edge coupling (BINNEC), where both nodes and edges are interdependent, is proposed in this work. In this model, nodes in network A randomly depend on multiple edges in network B, forming edge-dependent clusters. Additionally, a failure tolerance parameter, denoted as $\mu $, is set for these edge-dependent clusters. When the failure rate of an edge-dependent cluster exceeds $\mu $, the failure of the nodes in network A that depends on it, will happen. Based on the self-balancing probability method, a theoretical analysis framework is established. Through computer simulation verification of BINNEC under three classical network structures, the model's phase transition behavior and critical thresholds in the face of random attacks are analyzed. The results reveal that BINNEC under three network structures is as fragile as a single-element coupled network, exhibiting a first-order phase transition behavior. As the size of edge-dependent cluster $m$ increases, network robustness is enhanced. Moreover, with a constant size of edge-dependent cluster, a larger tolerance for node failure $\mu $ leads to stronger network robustness. Finally, this research reveals that under the same conditions of $m$ and $\mu $, when the tolerance for node failure $\mu $ is insufficient to withstand the failure of a single edge, the degree distribution widens, and network robustness weakens. However, when the tolerance for node failure is sufficient to withstand the failure of at least one edge, the network robustness actually strengthens as the degree distribution increases. These findings provide a theoretical basis for studying such binary coupled models and also for guiding the secure design of real-world networks.
      Corresponding author: Chen Shi-Ming, shmchen@ecjtu.jx.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341306, 12075088, 62263011) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202033).
    [1]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [2]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114Google Scholar

    [3]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671Google Scholar

    [4]

    Panzieri S, Setola R 2008 Int. J. Model. Identif Control 3 69Google Scholar

    [5]

    Adenso-Díaz B, Mar-Ortiz J, Lozano S 2018 Int. J. Prod. Res. 56 5104Google Scholar

    [6]

    Yao H G, Xiao H H, Wei W 2022 Discret. Dyn. Nat. Soc. 23 49523Google Scholar

    [7]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinins S D, Setola R 2008 Int. J. Crit. Infrastruct. 4 63Google Scholar

    [8]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [9]

    Hu B, Li F, Zhou H S 2009 Chin. Phys. Lett. 26 128901Google Scholar

    [10]

    Mizutaka S, Yakubo K 2015 Phys. Rev. E 92 012814Google Scholar

    [11]

    Li J, Wu J, Li Y, Deng H Z, Tan Y J 2011 Chin. Phys. Lett. 28 058904Google Scholar

    [12]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701Google Scholar

    [13]

    Dong G G, Gao J X, Tian L X, Du R J, He Y H 2012 Phys. Rev. E 85 016112Google Scholar

    [14]

    Gao J X, Buldyrev S V, Havlin S, Stanley E 2011 Phys. Rev. Lett. 107 195701Google Scholar

    [15]

    Jiang W, Liu R, Jia C 2020 Complexity 2020 3578736Google Scholar

    [16]

    Zhang H, Zhou J, Zou Y, Tan M, Xiao G X, Stanley H Z 2020 Phys. Rev. E 101 022314Google Scholar

    [17]

    Dong G, Chen Y, Wang F, Du R J, Tian L X, Stanley H E 2019 Chaos 29 073107Google Scholar

    [18]

    韩伟涛, 伊鹏 2019 68 078902Google Scholar

    Han W T, Yi P 2019 Acta Phys. Sin. 68 078902Google Scholar

    [19]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 032306Google Scholar

    [20]

    Gao Y L, Chen S M, Zhou J, Stanley H E, Gao J 2021 Physica A 580 126136Google Scholar

    [21]

    Gao Y L, Yu H B, Zhou J, Zhou Y Z, Chen S M 2023 Chin. Phys. B 32 098902Google Scholar

    [22]

    Zhao Y Y, Zhou J, Zou Y, Guan S G, Gao Y L 2022 Chaos Solitons Fractals 156 111819Google Scholar

    [23]

    Xie Y F, Sun S W, Wang L, Xia C Y 2023 Phys. Lett. A 483 129063Google Scholar

  • 图 1  相依网络示意图

    Figure 1.  Schematic diagram of the interdependence network.

    图 2  二元耦合网络模型及其级联失效示意图

    Figure 2.  Schematic diagram of binary coupled network model and cascade failure.

    图 3  BINNEC中概率参数${L_{\text{A}}}$和${L_{\text{B}}}$的定义示意图

    Figure 3.  Schematic definition of probability parameters ${L_{\text{A}}}$ and ${L_{\text{B}}}$ in BINNEC.

    图 4  RR BINNEC在极端$\mu $值和不同m 时, SASBp的关系图

    Figure 4.  Plots of SA and SB versus p for the RR BINNEC at extreme $\mu $ values and at different m .

    图 5  RR BINNEC在不同m 和$\mu $时SASBp的关系对比图

    Figure 5.  Comparison chart of SA and SB versus p for the RR BINNEC at different $\mu $ and m.

    图 6  ER BINNEC在极端$\mu $值和不同m时, SASBp的关系图

    Figure 6.  Plots of SA and SB versus p for the ER BINNEC at extreme $\mu $ values and at different m.

    图 7  ER BINNEC在不同m和$\mu $时SASBp的关系对比图

    Figure 7.  Comparison chart of SA and SB versus p for the ER BINNEC at different $\mu $ and m.

    图 8  SF BINNEC在极端$\mu $值和不同$m$时, SASBp的关系图

    Figure 8.  Plots of SA and SB versus p for the SF BINNEC at extreme $\mu $ values and at different $m$.

    图 9  SF BINNEC不同m和其对应不同$\mu $时, SASBp的对比图

    Figure 9.  Comparison chart of SA and SB versus p for the SF BINNEC at different $\mu $ and m.

    图 10  依赖群规模m取不同值时, ${p_{\text{c}}}$与$\mu $的关系图

    Figure 10.  Plot of ${p_{\text{c}}}$ versus $\mu $ for different dependency group sizes m.

    图 11  不同失效边${n_i}$下SBp的关系

    Figure 11.  Plot of SB versus p at different failure edges ${n_i}$.

    Baidu
  • [1]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [2]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114Google Scholar

    [3]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671Google Scholar

    [4]

    Panzieri S, Setola R 2008 Int. J. Model. Identif Control 3 69Google Scholar

    [5]

    Adenso-Díaz B, Mar-Ortiz J, Lozano S 2018 Int. J. Prod. Res. 56 5104Google Scholar

    [6]

    Yao H G, Xiao H H, Wei W 2022 Discret. Dyn. Nat. Soc. 23 49523Google Scholar

    [7]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinins S D, Setola R 2008 Int. J. Crit. Infrastruct. 4 63Google Scholar

    [8]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [9]

    Hu B, Li F, Zhou H S 2009 Chin. Phys. Lett. 26 128901Google Scholar

    [10]

    Mizutaka S, Yakubo K 2015 Phys. Rev. E 92 012814Google Scholar

    [11]

    Li J, Wu J, Li Y, Deng H Z, Tan Y J 2011 Chin. Phys. Lett. 28 058904Google Scholar

    [12]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701Google Scholar

    [13]

    Dong G G, Gao J X, Tian L X, Du R J, He Y H 2012 Phys. Rev. E 85 016112Google Scholar

    [14]

    Gao J X, Buldyrev S V, Havlin S, Stanley E 2011 Phys. Rev. Lett. 107 195701Google Scholar

    [15]

    Jiang W, Liu R, Jia C 2020 Complexity 2020 3578736Google Scholar

    [16]

    Zhang H, Zhou J, Zou Y, Tan M, Xiao G X, Stanley H Z 2020 Phys. Rev. E 101 022314Google Scholar

    [17]

    Dong G, Chen Y, Wang F, Du R J, Tian L X, Stanley H E 2019 Chaos 29 073107Google Scholar

    [18]

    韩伟涛, 伊鹏 2019 68 078902Google Scholar

    Han W T, Yi P 2019 Acta Phys. Sin. 68 078902Google Scholar

    [19]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 032306Google Scholar

    [20]

    Gao Y L, Chen S M, Zhou J, Stanley H E, Gao J 2021 Physica A 580 126136Google Scholar

    [21]

    Gao Y L, Yu H B, Zhou J, Zhou Y Z, Chen S M 2023 Chin. Phys. B 32 098902Google Scholar

    [22]

    Zhao Y Y, Zhou J, Zou Y, Guan S G, Gao Y L 2022 Chaos Solitons Fractals 156 111819Google Scholar

    [23]

    Xie Y F, Sun S W, Wang L, Xia C Y 2023 Phys. Lett. A 483 129063Google Scholar

Metrics
  • Abstract views:  4446
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2024
  • Accepted Date:  14 June 2024
  • Available Online:  16 July 2024
  • Published Online:  20 August 2024
  • /

    返回文章
    返回
    Baidu
    map