Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma characteristics in deep oscillation magnetron sputtering of chromium target

Gao Jian-Ying Li Yu-Ge Lei Ming-Kai

Citation:

Plasma characteristics in deep oscillation magnetron sputtering of chromium target

Gao Jian-Ying, Li Yu-Ge, Lei Ming-Kai
cstr: 32037.14.aps.73.20240364
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A global model for deep oscillation magnetron sputtering (DOMS) discharge is established to investigate the plasma characteristics in the ionization region. Target voltage and current waveforms with micropulse on-time τon of 2–6 μs and charging voltage of 300–380 V are acquired and used as an input of the proposed model. The effects of micropulse on-time and charging voltage on the plasma are investigated. At τon = 2 μs, the DOMS plasma density oscillates with the discharge current waveform. The plasma is mainly composed of Ar+ ions though the ionization fraction of Ar is only 2%. The proportion of Cr+ ions is lower but has a relatively high ionization fraction of 12%, and Cr2+ ions are negligible. The peak plasma density increases from 1.34×1018 m–3 at τon = 2 μs to 2.64×1018 m–3 at τon = 3 μs and the metal ionization fraction increases to 20%. Further increasing the on-time leads the peak density and ionization fraction to slightly change. When the charging voltage increases from 300 V to 380 V at τon = 6 μs, the peak plasma density increases linearly from 2.67×1018 m–3 to 3.90×1018 m–3, and the metal ionization fraction increases from 21% to 28%. The gas rarefaction occurs in the ionization region for DOMS discharge. The gas density oscillates in the initial stage of macropulse, and 5–6 micropulses later it reaches dynamic equilibrium. The Ar density dynamics shows that the Ar consumption is mainly caused by electron impact ionization, followed by electron impact excitation, and the consumption rate caused by sputter wind is about 10% of the electron impact ionization. The typical metal self-sputtering phenomenon of high power impulse magnetron sputtering (HiPIMS) also appears in the DOMS discharge. The peak value of self-sputtering parameter increases linearly with the peak power density rising. This suggests that the peak power density is one of the important parameters to manipulate the metal self-sputtering process in the DOMS discharge. The peak value of self-sputtering parameter reaches up to 0.20, indicating that a certain degree of metal self-sputtering occurs. The plasma density and the ionization fraction of the depositing flux are improved, which relieves the shadowing effect during conventional magnetron sputtering as a result of low ionization degree of sputtered metal.
      Corresponding author: Lei Ming-Kai, mklei@dlut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2018YFA0704603).
    [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [3]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [4]

    Greczynski G, Petrov I, Greene J E, Hultman L 2019 J. Vac. Sci. Technol. A 37 60801Google Scholar

    [5]

    Christie D J, Tomasel F, Sproul W D, Carter D C 2004 J. Vac. Sci. Technol. A 22 1415Google Scholar

    [6]

    Hajihoseini H, Čada M, Hubička Z, Ünaldi S, Raadu M A, Brenning N, Gudmundsson J T, Lundin D 2019 Plasma 2 201Google Scholar

    [7]

    Lin J L, Wang B, Sproul W D, Ou Y X, Dahan I 2013 J. Phys. D: Appl. Phys. 46 84008Google Scholar

    [8]

    王浩琦, 欧伊翔, 华青松, 邱马顺, 帅麒麟, 付薇 2022 北京师范大学学报(自然科学版) 58 775Google Scholar

    Wang H Q, Ou Y X, Hua Q S, Qiu M S, Shuai Q L, Fu W 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 775Google Scholar

    [9]

    Sanekata M, Nakagomi Y, Hirayama M, Nishida H, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Koyasu K, Misaizu F 2022 J. Appl. Phys. 131 243301Google Scholar

    [10]

    Yokoyama E, Sanekata M, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Misaizu F 2023 Jpn. J. Appl. Phys. 62 L1008Google Scholar

    [11]

    欧伊翔, 王浩琦, 庞盼, 罗军, 陈琳, 廖斌, 雷明凯, 欧阳晓平 2020 稀有金属材料与工程 49 2476

    Ou Y X, Wang H Q, Pang P, Luo J, Chen L, Liao B, Lei M K, Ouyang X P 2020 Rare Metal Mat. Eng. 49 2476

    [12]

    Oliveira J C, Fe Rnandes F, Fe Rreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [13]

    Ferreira F, Cavaleiro A, Oliveira J 2021 J. Mater. Eng. Perform. 30 3912Google Scholar

    [14]

    Belosludtsev A, Vlček J, Houška J, Haviar S, Čerstvý R 2020 Surf. Coat. Technol. 392 125716Google Scholar

    [15]

    Gao J Y, Ferreira F, Lei M K 2024 J. Appl. Phys. 135 33301Google Scholar

    [16]

    Gudmundsson J T, Fischer J, Hinriksson B P, Rudolph M, Lundin D 2022 Surf. Coat. Technol. 442 128189Google Scholar

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

    [18]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [19]

    Vlček J, Kudláček P, Burcalová K, Musil J 2007 Europhys. Lett. 77 45002Google Scholar

    [20]

    Huo C, Raadu M A, Lundin D, Gudmundsson J T, Anders A, Brenning N 2012 Plasma Sources Sci. Technol. 21 45004Google Scholar

    [21]

    Anders A, Čapek J, Hála M, Martinu L 2012 J. Phys. D: Appl. Phys. 45 12003Google Scholar

    [22]

    Oliveira J C, Ferreira F, Anders A, Cavaleiro A 2018 Appl. Surf. Sci. 433 934Google Scholar

  • 图 1  充电电压300 V、微脉冲开启时间2 μs时, DOMS靶电压和电流波形

    Figure 1.  Typical target voltage and current waveforms of a DOMS discharge with τon = 2 μs and DCint = 300 V.

    图 2  τon = 2 μs实验采集和模拟计算得到的DOMS放电靶电流

    Figure 2.  Experimental and calculated current waveforms at τon = 2 μs.

    图 3  DOMS等离子体带电粒子密度随时间变化 (a) τon = 2 μs; (b) τon = 6 μs

    Figure 3.  Temporal evolution of charged particle densities in DOMS plasmas: (a) τon = 2 μs; (b) τon = 6 μs.

    图 4  DOMS等离子体带电粒子密度随时间变化 (a) DCint = 340 V; (b) DCint = 380 V

    Figure 4.  Temporal evolution of charged particle densities in DOMS plasmas: (a) DCint = 340 V; (b) DCint = 380 V.

    图 5  主要带电粒子峰值密度随不同参数变化 (a)微脉冲开启时间; (b)充电电压

    Figure 5.  Peak densities of charged particle densities as functions of the different parameters: (a) Micropulse on-time; (b) charging voltage.

    图 6  Cr和Ar峰值离化率随不同参数变化 (a) 微脉冲开启时间; (b)充电电压

    Figure 6.  Peak ionization degrees of Cr and Ar as functions of: (a) Micropulse on-time; (b) charging voltage.

    图 7  离化区工作气体归一化密度随时间变化 (a) τon为2 μs和6 μs; (b) DCint为340 V和380 V

    Figure 7.  Temporal evolution of normalized density of working gas in the ionization region: (a) τon = 2 and 6 μs; (b) DCint = 340 and 380 V.

    图 8  充电电压300 V, Ar原子反应动力学 (a) τon = 2 μs; (b) τon = 6 μs

    Figure 8.  Dynamics of Ar atoms at DCint = 300 V: (a) τon = 2 μs; (b) τon = 6 μs.

    图 9  金属自溅射参数随时间变化 (a) τon为2和6 μs; (b) DCint为340和380 V

    Figure 9.  Temporal evolution of metal self-sputtering parameter: (a) τon = 2 and 6 μs; (b) DCint = 340 and 380 V.

    图 10  峰值金属自溅射参数随不同参数变化 (a)微脉冲开启时间; (b)充电电压; (c)峰值功率密度

    Figure 10.  Peak self-sputtering parameter as function of different parameters: (a) Micropulse on-time; (b) charging voltage; (c) peak power density.

    表 1  不同微脉冲开启时间DOMS放电参数

    Table 1.  Discharge parameters of DOMS using different micropulse on-time.

    充电
    电压/V
    微脉冲开启
    时间τon/μs
    峰值
    电压/V
    峰值
    电流/A
    峰值
    功率/kW
    3002635.827.514.4
    3003729.050.629.8
    3004714.449.429.2
    3005726.051.531.0
    3006731.651.530.8
    3406810.663.842.2
    3806870.773.548.7
    DownLoad: CSV

    表 2  DOMS溅射Cr靶主要等离子体反应

    Table 2.  Reactions considered in DOMS plasma using a Cr target.

    反应 阈值/eV 速率系数/(m3·s–1)
    e + Ar → Ar+ + 2e 15.76 $2.3\times 10^{-14}T_{\rm e}^{0.59} \exp(-17.44/T_{\rm e}) $
    e + Ar → Arm + e 11.56 $2.5\times 10^{-15}T_{\rm e}^{0.74}\exp(- 11.56/T_{\rm e}) $
    e + Arm → Ar+ + 2e 4.20 $6.8\times 10^{-15}T_{\rm e}^{0.67} \exp(-4.2/T_{\rm e}) $
    e + Cr → Cr+ + 2e 6.76 $4.12\times 10^{-13}T_{\rm e}^{ -0.151}\exp(- 10.71/T_{\rm e})$
    e + Cr+ → Cr2+ + 2e 16.49 $5.27\times 10^{-14}T_{\rm e}^{ 0.087}\exp(- 22.05/T_{\rm e})$
    Ar+ + Cr → Ar + Cr+ $1\times10^{-15} $
    Arm + Cr → Ar + Cr+ + e $3.3\times10^{-16} $
    DownLoad: CSV
    Baidu
  • [1]

    Kouznetsov V, Macák K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [2]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [3]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [4]

    Greczynski G, Petrov I, Greene J E, Hultman L 2019 J. Vac. Sci. Technol. A 37 60801Google Scholar

    [5]

    Christie D J, Tomasel F, Sproul W D, Carter D C 2004 J. Vac. Sci. Technol. A 22 1415Google Scholar

    [6]

    Hajihoseini H, Čada M, Hubička Z, Ünaldi S, Raadu M A, Brenning N, Gudmundsson J T, Lundin D 2019 Plasma 2 201Google Scholar

    [7]

    Lin J L, Wang B, Sproul W D, Ou Y X, Dahan I 2013 J. Phys. D: Appl. Phys. 46 84008Google Scholar

    [8]

    王浩琦, 欧伊翔, 华青松, 邱马顺, 帅麒麟, 付薇 2022 北京师范大学学报(自然科学版) 58 775Google Scholar

    Wang H Q, Ou Y X, Hua Q S, Qiu M S, Shuai Q L, Fu W 2022 J. Beijing Normal Univ. (Nat. Sci.) 58 775Google Scholar

    [9]

    Sanekata M, Nakagomi Y, Hirayama M, Nishida H, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Koyasu K, Misaizu F 2022 J. Appl. Phys. 131 243301Google Scholar

    [10]

    Yokoyama E, Sanekata M, Nishimiya N, Tona M, Yamamoto H, Tsukamoto K, Fuke K, Ohshimo K, Misaizu F 2023 Jpn. J. Appl. Phys. 62 L1008Google Scholar

    [11]

    欧伊翔, 王浩琦, 庞盼, 罗军, 陈琳, 廖斌, 雷明凯, 欧阳晓平 2020 稀有金属材料与工程 49 2476

    Ou Y X, Wang H Q, Pang P, Luo J, Chen L, Liao B, Lei M K, Ouyang X P 2020 Rare Metal Mat. Eng. 49 2476

    [12]

    Oliveira J C, Fe Rnandes F, Fe Rreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140Google Scholar

    [13]

    Ferreira F, Cavaleiro A, Oliveira J 2021 J. Mater. Eng. Perform. 30 3912Google Scholar

    [14]

    Belosludtsev A, Vlček J, Houška J, Haviar S, Čerstvý R 2020 Surf. Coat. Technol. 392 125716Google Scholar

    [15]

    Gao J Y, Ferreira F, Lei M K 2024 J. Appl. Phys. 135 33301Google Scholar

    [16]

    Gudmundsson J T, Fischer J, Hinriksson B P, Rudolph M, Lundin D 2022 Surf. Coat. Technol. 442 128189Google Scholar

    [17]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. B 268 1818Google Scholar

    [18]

    Gudmundsson J T 2020 Plasma Sources Sci. Technol. 29 113001Google Scholar

    [19]

    Vlček J, Kudláček P, Burcalová K, Musil J 2007 Europhys. Lett. 77 45002Google Scholar

    [20]

    Huo C, Raadu M A, Lundin D, Gudmundsson J T, Anders A, Brenning N 2012 Plasma Sources Sci. Technol. 21 45004Google Scholar

    [21]

    Anders A, Čapek J, Hála M, Martinu L 2012 J. Phys. D: Appl. Phys. 45 12003Google Scholar

    [22]

    Oliveira J C, Ferreira F, Anders A, Cavaleiro A 2018 Appl. Surf. Sci. 433 934Google Scholar

Metrics
  • Abstract views:  4728
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2024
  • Accepted Date:  27 June 2024
  • Available Online:  13 July 2024
  • Published Online:  20 August 2024
  • /

    返回文章
    返回
    Baidu
    map