Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of effect of metal particles on breakdown process of three-electrode gas spark switches

Zhou Xin-Miao Zhang Bo-Ya Chen Li Li Xing-Wen

Citation:

Simulation of effect of metal particles on breakdown process of three-electrode gas spark switches

Zhou Xin-Miao, Zhang Bo-Ya, Chen Li, Li Xing-Wen
cstr: 32037.14.aps.73.20231283
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Compared with two-electrode gas spark switch, three-electrode gas spark switch has the advantages of lower operating voltage, higher reliability and less discharge jitter, so it has been widely used in pulse power systems. However, due to the characteristics of pulse power technology, the gas spark switch is easy to cause ablation on the electrode surface during use, and the metal particles generated by ablation will significantly affect the stability and reliability of the switch. In this work the discharge process of the three-electrode gas spark switch under atmospheric pressure nitrogen environment is simulated first. In this model, the ionization coefficient near the trigger electrode is modified to compensate for the shortcomings of the local field approximation, and the relevant mathematical derivation process is given. The formation of the initial electrons is described by the field electron emission phenomenon, and the development process of electron collapse into the streamer is obtained. The physical mechanism of switch on is investigated, and the development process of each stage of switch discharge is described in detail. Then, the discharge process of the switch is studied when there are metal particles near the trigger. The study shows that the presence of metal particles enhances the electric field near the trigger and accelerates the formation of the initial electron cloud. In addition, in the presence of metal particles, the metal particles and the trigger will first break down, forming a high-density plasma channel after the breakdown, and becoming the source of the subsequent flow development. At the same time, because the metal particles on the channel have an obstructing effect on the streamer development, the streamer generates a discharge branch after contacting metal particles. In the end, the influences of metal particles of different shapes and sizes on the discharge process are discussed. The results show that metal particles with sharp shapes have stronger electric field distortion, when the electric field intensity is large enough, it may cause field emission on the surface of metal particle. And it is also made clear that the size of metal particle is small, the obstruction of the development path of streamer is small, and the streamers quickly converge behind the particles.
      Corresponding author: Zhang Bo-Ya, zhangby@xjtu.edu.cn
    [1]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [2]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210

    [3]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar

    [4]

    Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar

    [5]

    Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar

    [6]

    Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar

    [7]

    You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar

    [8]

    Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar

    [9]

    Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar

    [10]

    Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar

    [11]

    徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar

    Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar

    [12]

    Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar

    [13]

    Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar

    [14]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [15]

    Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar

    [16]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar

    Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [19]

    Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar

    [20]

    Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar

    [21]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [22]

    Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar

    [23]

    Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar

    [24]

    杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [25]

    Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar

    [26]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar

    [27]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [28]

    李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar

    Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar

  • 图 1  开关结构示意图

    Figure 1.  Schematic diagram of switch structure.

    图 2  触发脉冲波形实测图

    Figure 2.  Trigger pulse waveform.

    图 3  电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Figure 3.  Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 4  电场模时空分布图 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Figure 4.  Spatial and temporal distribution of electric field modes: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 5  金属微粒所带电荷量

    Figure 5.  Charge carried by metal particles.

    图 6  有无金属微粒存在时触发极表面发射电流波形

    Figure 6.  Surface emission current waveforms of the trigger electrode in the presence or absence of metal particles.

    图 7  触发极电场局部放大图 (a)无金属微粒; (b)金属微粒

    Figure 7.  Local magnification of the electric field at the trigger electrode: (a) No metal particles; (b) with metal particles.

    图 8  电子密度时空分布图, 其中绿色等高线为1×1019 m–3电子数密度等高线, 红色等高线为1×1019 m–3正离子数密度等高线 (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns

    Figure 8.  Spatial and temporal distribution of electron density, where the green contour is the 1×1019 m–3 electron number density contour and the red contour is the 1×1019 m–3 positive ion number density contour: (a) 4.0 ns; (b) 4.5 ns; (c) 5.0 ns; (d) 6.3 ns.

    图 9  不同形状、半径金属微粒对触发极附近电场的影响

    Figure 9.  Effect of metal particles of different shapes and radius on the electric field near the trigger electrode.

    图 10  不同尺寸微粒下微粒与电极间隙电场分布图

    Figure 10.  Distribution of electric field between particle and electrode gap for different particle sizes.

    图 11  不同尺寸金属微粒存在时的电子密度分布图, 红色等高线为1×1019 m–3正离子数密度等高线 (a) r = 10 μm; (b) r = 20 μm

    Figure 11.  Electron density distribution in the presence of metal particles of different sizes, with the red contour being the 1×1019 m–3 positive ion number density contour: (a) r = 10 μm; (b) r = 20 μm.

    Baidu
  • [1]

    Golnabi H 2000 Rev. Sci. Instrum. 71 413Google Scholar

    [2]

    Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A, Mesyats G A 2008 Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC Las Vegas, NV, USA, May 27–31, 2008 pp207–210

    [3]

    邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685Google Scholar

    Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage 42 685Google Scholar

    [4]

    Zhong W, Zhang G L, Xu A 2019 AIP Adv. 9 045023Google Scholar

    [5]

    Li X A, Pei Z H, Wu Z C, Zhang Y Z, Liu X D, Li Y D, Zhang Q G 2018 Rev. Sci. Instrum. 89 035113Google Scholar

    [6]

    Wang J, Li Q, Li B, Chen C, Liu S, Li C 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1951Google Scholar

    [7]

    You H, Zhang Q, Guo C, Xu P, Ma J, Qin Y, Wen T, Li Y 2017 IEEE Trans. Dielectr. Electr. Insul. 24 876Google Scholar

    [8]

    Cookson A H, Farish O, Sommerman G M L 1972 IEEE Trans. Power Appar. Syst. PAS-91 1329Google Scholar

    [9]

    Laghari J R, Qureshi A H 1981 IEEE Trans. Electr. Insul. EI-16 388Google Scholar

    [10]

    Hara M, Akazaki M 1977 J. Electrost. 2 223Google Scholar

    [11]

    徐翱, 钟伟, 金大志, 陈磊, 谈效华 2019 真空科学与技术学报 39 7Google Scholar

    Xu A, Zhong W, Jin D Z, Chen L, Tan X H 2019 Chin. J. Vacuum Sci. Tech. 39 7Google Scholar

    [12]

    Zhong W, Shi Y, Zhang C, Li X 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1095Google Scholar

    [13]

    Sun Q, Zhou Q H, Yang W, Dong Y, Zhang H T, Song M M, Wu Y 2021 Plasma Sources Sci. Technol. 30 045001Google Scholar

    [14]

    孙强, 周前红, 宋萌萌, 杨薇, 董烨 2021 70 015202Google Scholar

    Sun Q, Zhou Q H, Song M M, Yang W, Dong Y 2021 Acta Phys. Sin. 70 015202Google Scholar

    [15]

    Asiunin V I, Davydov S G, Dolgov A N, et al. 2018 Plasma Phys. Rep. 44 605Google Scholar

    [16]

    党腾飞, 尹佳辉, 孙凤举, 王志国, 姜晓峰, 曾江涛, 魏浩, 邱爱慈 2015 强激光与粒子束 27 065004Google Scholar

    Dang T F, Yin J H, Sun F J, Wang Z G, Jiang X F, Zeng J T, Wei H, Qiu A C 2015 High Power Laser Part. Beams 27 065004Google Scholar

    [17]

    孙旭, 苏建仓, 张喜波, 王利民, 李锐 2012 强激光与粒子束 24 843Google Scholar

    Sun X, Su J C, Zhang X B, Wang L M, Li R 2012 High Power Laser Part. Beams 24 843Google Scholar

    [18]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [19]

    Montijn C, Hundsdorfer W, Ebert U 2006 J. Comput. Phys. 219 801Google Scholar

    [20]

    Dhali S K, Williams P F 1987 J. Appl. Phys. 62 4696Google Scholar

    [21]

    Zhu Y F, Chen X C, Wu Y, Hao J B, Ma X G, Lu P F, Tardiveau P 2021 Plasma Sources Sci. Technol. 30 075025Google Scholar

    [22]

    Soloviev V R, Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208Google Scholar

    [23]

    Nefyodtsev E V 2014 IEEE Trans. Dielectr. Electr. Insul. 21 892Google Scholar

    [24]

    杨初平, 耿屹楠, 王捷, 刘兴南, 时振刚 2021 70 135102Google Scholar

    Yang C P, Geng Y N, Wang J, Liu X N, Shi Z G 2021 Acta Phys. Sin. 70 135102Google Scholar

    [25]

    Forbes R G, Deane J H B 2007 Proc. R. Soc. A 463 2907Google Scholar

    [26]

    徐翱, 杨林, 钟伟, 刘云龙, 尚绍环, 金大志 2018 高电压技术 44 1922Google Scholar

    Xu A, Yang L, Zhong W, Liu Y L, Shang S H, Jin D Z 2018 High Voltage 44 1922Google Scholar

    [27]

    Levko D, Arslanbekov R R, Kolobov V I 2020 J. Appl. Phys. 127 043301Google Scholar

    [28]

    李伯男, 李熙, 黄磊峰, 刘洋, 吴益明, 吴鹏 2019 电力工程技术 38 123Google Scholar

    Li B N, Li X, Huang L F, Liu Y, Wu Y M, Wu P 2019 Electric Power Eng. Tech. 38 123Google Scholar

  • supplement 1-20231283 补充材料.pdf supplement
Metrics
  • Abstract views:  4763
  • PDF Downloads:  80
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2023
  • Accepted Date:  02 September 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024
  • /

    返回文章
    返回
    Baidu
    map