Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing

Wei Fu-Xian Liu Jun-Hong Peng Teng Wang Bo Zhu Hong-Qiang Chen Xiao-Li Xiong Zu-Hong

Citation:

Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing

Wei Fu-Xian, Liu Jun-Hong, Peng Teng, Wang Bo, Zhu Hong-Qiang, Chen Xiao-Li, Xiong Zu-Hong
cstr: 32037.14.aps.72.20230998
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The maximum external quantum efficiency of the host-guest-type organic light-emitting diodes (OLEDs) with interface exciplex as the host has been over 36%. However, studies about the energy transfer processes occurring from the host to guest remain lacking. Herein, a strategy is proposed to probe the energy transfer processes in interface-type OLEDs by utilizing the characteristic magneto-electroluminescence (MEL) response from the hot exciton reverse intersystem crossing (T2,Rub → S1,Rub) of rubrene. Specifically, a donor/spacer/accepter (D/S/A)-type interface exciplex device and a D/spacer:x% Emitter/A (D/S:3% Rubrene/A)-type Rubrene-doped device are fabricated. The Förster resonance energy transfer (FRET) process occurring between the singlet state of the exciplex-host and the singlet state of Rubrene-guest is demonstrated by characterizing the photophysical properties of the donor, accepter, and guest materials. The Dexter energy transfer (DET, T1,Host → T2,Rub) process between the triplet state of the host and the triplet state of guest is visualized by the comparative studying of the current- and temperature-dependent MEL response curves of D/S/A and D/S:3% Rubrene/A devices, respectively. More importantly, the occurrence of the DET process greatly promotes the electroluminescence intensity of the D/S:3% Rubrene/A device. Furthermore, we also investigate the differences in the electroluminescence performance of devices at low temperature to demonstrate again the co-existence of FRET and DET process in the D/S:3% Rubrene/A system. Obviously, this work not only provides a promising strategy for probing the DET process in OLEDs, but also paves a new way for designing high-performance “hot exciton” type OLEDs.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the Foundation from the Education Commission of Chongqing, China (Grant No. KJQN202200569), the National Natural Science Foundation of China (Grant Nos. 12104076, 11874305), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0560), and the University-level Foundation of Chongqing Normal University, China (Grant No. 21XLB050).
    [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar

    [2]

    Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar

    [3]

    梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar

    Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar

    [4]

    Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar

    [5]

    Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar

    [6]

    Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar

    [7]

    Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar

    [8]

    Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar

    [9]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [10]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [11]

    Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar

    [12]

    Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar

    [13]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [14]

    Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar

    [15]

    Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar

    [16]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [17]

    Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar

    [18]

    Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar

    [19]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52

    [20]

    Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar

    [21]

    Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar

    [22]

    汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar

    Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar

    [23]

    Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar

    [24]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [25]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [26]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [27]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [28]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [29]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

  • 图 1  (a) 器件所涉及有机材料的化学分子结构; (b) 器件能级结构图; (c) 固态薄膜的PL谱和Rubrene的吸收谱

    Figure 1.  (a) Chemical molecular structures of organic materials involved in devices; (b) schematic diagram of the energy level structure of devices; (c) PL spectra of solid-state films and the absorption spectrum of Rubrene.

    图 2  (a) 室温下器件1—3的归一化EL谱; (b) 室温下器件1—3的I-B曲线; (c)不同工作温度下, 器件2在100 μA偏置电流时的EL谱; (d) 器件2在不同工作温度下的I-B曲线; (e) 不同工作温度下, 器件3在100 μA偏置电流时的EL谱; (f) 器件3在不同工作温度下的I-B曲线

    Figure 2.  (a) Normalized EL spectra of devices 1–3 at room temperature; (b) I-B curves of devices 1–3 at room temperature; (c) EL spectra of Dev. 2 at bias current of 100 μA with different operating temperatures; (d) I-B curves of Dev. 2 at different operating temperatures; (e) EL spectra of Dev. 3 at bias current of 100 μA with different operating temperatures; (f) I-B curves of Dev. 3 at different operating temperatures.

    图 3  (a), (b) 器件2电流与温度依赖的MEL曲线; (c), (d) 器件3电流与温度依赖的MEL曲线

    Figure 3.  (a), (b) Current- and temperature-dependent MEL curves of Dev. 2; (c), (d) current- and temperature-dependent MEL curves of Dev. 3.

    图 4  (a) 器件2中材料分子的分布图; (b) 器件2在电激发下载流子迁移和复合的示意图; (c) 器件2中发生的微观演化过程

    Figure 4.  (a) Schematic diagram of the distribution of material molecules in Dev. 2; (b) schematic diagram of charge-carrier transport and recombination in Dev. 2; (c) microscopic evolutionary processes occurring in Dev. 2.

    图 5  (a) 器件3中材料分子的分布图; (b) 器件3中载流子输运和复合的示意图; (c) 器件3中发生的微观演化过程

    Figure 5.  (a) Diagram showing the distribution of material molecules in Dev. 3; (b) schematic diagram of charge-carrier transport and recombination in Dev. 3; (c) microscopic evolutionary processes occurring in Dev. 3.

    表 1  有机发光器件1—3的具体结构

    Table 1.  Specific structure of organic light-emitting devices 1–3.

    Device name Structure
    Dev. 1 ITO/PEDOT:PSS/TCTA (50 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    Dev. 2 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    Dev. 3 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO:3% Rubrene (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    DownLoad: CSV
    Baidu
  • [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar

    [2]

    Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar

    [3]

    梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar

    Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar

    [4]

    Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar

    [5]

    Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar

    [6]

    Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar

    [7]

    Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar

    [8]

    Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar

    [9]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [10]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [11]

    Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar

    [12]

    Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar

    [13]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [14]

    Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar

    [15]

    Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar

    [16]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [17]

    Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar

    [18]

    Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar

    [19]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52

    [20]

    Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar

    [21]

    Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar

    [22]

    汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar

    Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar

    [23]

    Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar

    [24]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [25]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [26]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [27]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [28]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [29]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

Metrics
  • Abstract views:  6286
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2023
  • Accepted Date:  07 July 2023
  • Available Online:  13 July 2023
  • Published Online:  20 September 2023
  • /

    返回文章
    返回
    Baidu
    map